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ABSTRACT

This thesis presents the theoretical and computational
underpinninas of a novel approach toAthe determination of,the
acoustic parameters of the ocean bottom using a monochromatic
source. The problem is shown to be eauivalent to that of the
reconstruction of the potential in a Schr~dinger equation
from the knowledge of the plane-wave reflection coefficient
as a function of vertical wavenumber, rjkz) for all real

positive k First, the reflection coefficient is shown to
decay asymptotically at least as fast as (1/kz 2) for large kz.
and is therefore integrable. The Gelfand-tevitan inversion
procedure is extended to include the case of basement
velocity higher than the velocity of sound in water. The
peglect of bound states is shown to be justified in both
clayey silt and silty clay at the 220 Hz frequency of
operation.

Three ,ethods for thd numerical solution,-ofthe integral
eauation are investigated. The first one is an "Improved
Born approximation" wherein the solution is given as a series
expansion the first term of which is the Born approximation
while the second, term represents a substantial and yet easy
to implement improvement over Born.

The -twO other methods are based on a discretization of
the Gelfand-Levitan integral equation, and both avoid a
matrix inversion: one byemploying a recursive procedure,
and the other by coupling the Gelfand-Levitan equation with a
partial differential equation. Bounds are obtained on errors
in the solution due either to discretization or to data inac-
curacy. These methods are tested on synthetic data obtained
from known eoacoustic models of the ocean bottom. Results
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are found to be very accurate particularly at the top of the
sediment layer with resolution of less than the wavelenqth of
the acoustic source in the water. Several effects are inves-
tigated, such as samplinq, attenuation, and noise. Also
examined is the gradual restriction of the reflection coeffi-
cient to a finite ranne of vertical wavenumbers and the con-
seauent progressive deterioration of the reconstruction.

The analysis shows how to reconstruct velocity profiles
in the presence of density variation when the exoeriment is
conducted at two freauencies.

Our results provide a qood understandinq of the issues
involved in conductina a monochromatic deep ocean bottom
experiment and constitute a promisinq technigue for process-
ina the experimental data when it becomes available.
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CHAPTER I

BACKGROUND

It is a rare person whose pulse is
not stirred by the dramatic siqht of
the restless surface of the sea.
The chaotic sea surface is a
limitless source of inspiration to
poet, painter and musician alike.
But what lies beneath this churninq
surface? How can we probe the
depths of the sea?

C. Clay & H. Medwin

1.1 Backqround

The sea floor begins at the water-sediment interface,

overlies the sedimentary laver, and beneath it, the oceanic

crust. The study of the ocean bottom has been, until

recently, the province of the marine neoloqist seekinq to

probe the oceanic crust, and to unravel the secrets of its

structure and evolution. The marine qeologist has now been

joined by the underwater acoustician studyinq the transmis-

sion of low freauencv sound throuqh the ocean; It has become

clear in light of underwater sound propagation experiments

carried out at the various Oceanographic Institutions ( I ) that

lona range low freauency sound transmission is affected by

the nature of the ocean bottom, and hence, that acoustic wave

propagation models - to characterize sonar performance, for

instance - should include a detailed representation of the
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bottom, the qeoacoustic model. In practice, one posits a

"reasonable" ocean bottom model, and then one proceeds to

sc"_e the propaqation problem at hand, (the "Direct"

nroblem). Here, the opposite perspective is adopted: Since

the ocean bottom affects acoustic wave propaqation, would it

not be possible to learn somethina about the bottom from that

interaction? (The "Inverse" problem.)

The answer to this question is beina sought in the

context of an oriqinal, single frequency, deep ocean bottom

interaction experiment desiqned by G. Frisk and his

colleaques of the Woods Hole Oceanoqraohic Institution, and

performed in the Hatteras Abyssal Plain ( 2 ) , ( 3 ) and at other

locations ( 4 ) . The monochromatic character of the Frisk

method sets it apart from currently used techniques usinq

explosive (or impulse-like) wide-band sources. The Frisk

experiment started off as a heuristic approach.

This thesis presents the theoretical basis and numerical

analysis of the monochromatic experiment based on an exten-

sion of the Gelfand-Levitan theory of quantum scatterinq. We

succeeded in applyinq a numerical solution to the exact

inverse method which distinguishes this solution method from

the currently used approximate or trial and error inverse

methods.

-8-



1.2 The Experiment

The oeometry of the experiment is best explained with

reference to Pig. 1. In brief, a drifting vessel tows a

220 Hz pulsed CW source. Hydrophones moored close to the

bottom record the resultina pressure, both amplitude and

phase (via coherent quadrature demodulation), as the ship

opens range.

The pulsing of the 220 Hz source, turning it on for

4 sec every 14 sec, allows for steady state conditions to be

attained before any reflections from the ocean surface can

reach the receivers. Note that a 14 second duty cycle

signifies that the acoustic field is sampled spatially once

every half wavelenoth.

The source aperture is small enough compared to the

wavelength (7 m) to be considered an omnidirectional point

s-urce. The rrcorded compleK pressure is therefore the field

due to the reflections of a spherical wave off the bottom.

The information is translated via a Hankel transform, into

the plane wave reflection coefficient at a single frequency

(220 Hz) for all anqles of incidence, both real and

comnlex (5 ) . The critical point to observe is that for a

monochromatic plane wave incident on a flat layered bottom,

the reflection coefficient is a function of the angle of

incidence. At a given angle of incidence, the magnitude and

phase of the reflection coefficient depend on the acoustic

-9-
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properties of the bottom sediments. That naturally leads to

the ocean bottom inverse problem: Can the sediment acoustic

parameters, velocity and density, be reconstructed from the

plane wave reflection data at a sinqle frequencv for all

anales of incidence? The thesis aims to elucidate that

auestions.

1.3 Experimental Data

The relationship between the experimental data and the

plane wave reflection coefficient has been studied numerical-

ly by Frisk et al(3 ) and Mook (6 ) . Before beqinninq our

analysis, it is useful here to take a Quick look at the

underlying theory relatinq the reflections of spherical waves

from a point source, as in the Frisk experiment, to the plane

wave reflection as in our model.

The measurements yield the pressure field due to a point

source above the bottom half space. Because of the cylindri-

cal symmetry of the problem, the reflected pressure field can

be written as a superposition of plane waves

O k 0 2 k r 2 z + z 0 )
PR(r,z) = 2 1 r(kr)e 2  J 0 (krr)k dk

,/k0 2-kr

(1.1)

where kr is the horizontal wavenumber, and r(kr) is the

correspondina reflection coefficient.
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This Sommerfeld integral is a Hankel transform which can

be inverted to obtain the reflection coefficient

S-ik 0 2-k r21z+z01
r(kr -i/k 0 -kr e PR(r)JO(krr)dr

(1.2)

Note that r(kr) is a function of horizontal wavenumber while

the required input to the inverse procedure is the reflection

coefficient as a function of the vertical wavenumber r(kz).

The two are of course related by the dispersion relation

kz2 = k0
2 _ kr 2  (1.3)

Given r(kr) for real kr, one can readily generate r(kz ) for

0 < kz < k0 . It is more difficult to obtain r(kz ) for the

full range 0 < kz < - since k0 < kz < - correspond to r(kr)

for imaginary kr . One approach has been suggested by

Stickler (7 ) and involves the use of a theorem by Van Winter

to generate r(kz ) on a ray in the complex plane given its

value on the real axis segment 0 < kz < k0 . The effect of

limiting r(kz ) to real angles (0 < kz < k0 ) on the inversion

for the unknown potential V(z) will be discussed in

Chapter VI.
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1.4 The Model

A number of assumptions are implicit in the "exact"

inverse procedure detailed in the following chapters.

(a) The ocean is assumed homogeneous, and acoustically

transparent. In particular, the depth variation of the

velocity of sound propagation is neglected. That is a

reasonable assumption at the great depth (5 km) in which the

experiment is conducted.

(b) The ocean bottom is assumed to have no horizontal

structure, the velocity variation is therefore solely a

function of depth. That is a severe restriction imposed by

all "exact" inversion formalisms developed to date.

Surprisingly, horizontal stratification describes adequately

vast areas of the deep ocean floor known as Abyssal plains:

These are widespread in the Atlantic and Indian Oceans and in

the marginal seas.

The early deep ocean bottom interaction experiments were

conducted in the Hatteras Abyssal Plain. This nearly level

plain lies at the base of the East Coast Continental rise,

and is 1000 km long by 150-300 km wide. Its thick (> 1 km)

sediments were formed by the smooth accumulation of

turbidites over the rough basement resulting in one of the

flattest areas on earth with slopes of less than 1 m/km.

-13-



(c) The ocean bottom has been traditionally treated as

a fluid in problems involvinn bottom reflection. In the deep

ocean bottom interaction experiments, the acoustic source

qenerates compressional (P) waves in the water, which upon

propagation in the bottom, a vertically heteroqeneous medium,

may be converted to shear (SV) waves. The conversion to

shear waves will occur discretely at layer interfaces and

continuously, where velocity aradients occur. Fryer had

shown in one of his papers 8 ) that couplinq for continuously

varying elastic parameters is neqliqihle at frequencies above

20 Hz. Vidmar and Foreman (9 ) estimated that gradient-induced

couplinq should be expected in marine sediment at frequencies

up to 3 Hz. Another paper by Fryer( 1 0 ) established that this

couplinq is extremely small above 1 Hz, reqardless of

sediment thickness. The most important effect of coupling

appears to be the conversion of shear to compressional motion

at the sediment basement interface. Note, that although

these results are based on a continuously varvinq structure

(approximated by homogeneous layers), they do provide for the

sharp discontinuity in elastic parameters at the sediment

basement interface. These results do justify the neglect of

shear wave effects at the 220 Hz frequency selected for the

experiments that have already been conducted, and at the

lower frequencies envisaaed by the Frisk group for future

experiments.
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1.5 Overview of the Thesis

In Chapter II, we begin with a mathematical statement of

the inverse problem and represent it as a scatterinq problem

for the Schrodinqer equation. We conclude the chapter with a

review of the relevant literature.

The input to the inverse procedure, the plane-wave re-

flection coefficient, and particularly its asymptotic

behavior for large vertical wavenumbers are the subject of

Chapter III.

Chapter IV presents an extension of the Gelfand-Levitan

inversion method to the case of non-zero terminal potential.

It is this formulation that permits us an exact solution of

the inverse problem so that what remains is the numerical

solution of the inteqral equation characterizing the

solution.

The derivation presented in Chapter IV is followed in

Chapter V by a discussion of three numerical methods to solve

the Gelfand-Levitan integral equation: An improved Born

approximation and two finite-difference methods.

The numerical methods outlined in Chapter V were tested

on various postulated acoustic profiles using synthetically

generated reflection coefficients. The representative numer-

ical results, the impact of sampling, finite angle aperture,

density, loss and noise are discussed in Chapter VI.

Chapter VII comprises the conclusion and suggestions for

future work.

-15-



CHAPTER II

PROBLEM FORMULATION AND REVIEW OF PAST WORK

The determination of the acoustic properties of the

ocean bottom from the monochromatic plane wave reflection

coefficient at all angles of incidence is now shown to be

related to a class of inverse problems in auantum scattering

theory where an unknown potential in Schrodinqer's equation

is sought from scattering data. The first part of the

chapter casts the problem into mathematical form based on the

assumptions set forth in Chapter I. This is followed by a

review of the relevant inverse problem literature.

2.1 Problem Formulation

(a) Acoustic Wave Equation

In acoustics, the pressure gradient gives rise to an

acceleration of mass density p according to

-- VP (2.1)O at

where p is acoustic pressure and v is particle velocity.

Mass conservation, together with a constitutive relation

(Hooke's law), yields:

P =2 v  +
at pc .v (2.2)

in which c is sound velocity in the medium.
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Fourier transforminq the time dependence in the funda-

mental equations (2.1) and (2.2), [ . + - iw], and

combining the resultin time-independent equations leads to

the acoustic wave equation:

- 1T vp(xz)) + 2n 2(z) p(x,z) = 0 (2.3)

c
with kO =__ and index of refraction n(z) = 0 In the

0  CT

derivation of eauation (2.3), the acoustic medium has been

assumed to be vertically inhomoqeneous (or horizontally

stratified). In other words, the material properties are a

function of depth (z) only.

The neglect of density variations reduces equation (2.3)

to the Helmholtz eauation for the pressure,

V2p(x,z) + k2n 2(z) p(x,z) = 0 . (2.4)

The equation (2.4) constitutes the starting point of this

study.

Note: In the presence of smooth density variations, the

acoustic equation (2.3) can also be reduced to the

Helmholtz equation through the chanqe of variable (I I)

-17-



P = p/;p . It follows that,

V + k 2n 2( = 0 (2.5)

with

2 2 -2 1 2 3 1 2
nl n + k (T V P T(- VT))

(b) Mappino the Seabed Below a HomoGeneous Ocean

The specific problem of interest is mapping the seabed

below a homogenous ocean. The starting point is again the

acoustic wave equation (2.4):

V 2p(x,z) + k2n 2(z) p(x,z) = 0 (2.6)

for the configuration shown in Fig. 2. Let

2 2
n (z) 1 + P (z)

Since the medium is homogeneous in x, the spatial

variables can be separated by assuming that:

i(kosins)x

p(x,z,k) = u(z,k) e (2.7)

Note that k sine k , the horizontal wavenumber (cf.

Fig. 3).
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Fig. 2 Schematic Illustration of the Scattering Problem
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kij kosi n 0

kz= k0 cos 0

0

Fig. 3 Wavenumber Decomposition
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Substitutini from (2.7) for n)(xpz) into wave eqjuation

(2.6), one obtains an equation for the z variation of

pressure, u(z):

d 2+( 2 _k 2 sin 2 e + k 02 2 (z)]u = 0 (2.8)
2 0k, -e

dz

or

d 2u + [k 2 co e + k 2 P2 (z)]u = 0 (2.9)
.2 0o o
dz

this is similar to the time-independent Schrodinger equation.

Equation (2.9) can be written in the familiar form:

dU(z,E) + [~E - V(z)1 u(z,E) = 0 (2.10)
dz

with the identifications:

kz = kocose, the vertical wavenumber is "momentum".

E = k0 2cos
2e is the "eneray".

V(z) = k0 
2 V2 (z) is the "Potential".

A few remarks are in order:

0 The vertical wavenumber, kz, becomes imaginary

for kx > k0.

-21-



0 As kz ranqes on [ko , -], kx becomes pure

imaainarV.

* The enerqy E = ko 2 co s 2e is always real. For kz

real, E is positive.

* The potential V'z) = - n2(z)) is in

general positive except, possibly, for a low

velocity layer at the ocean bottom interface.

Ry analogy with quantum mechanics, one can draw a "potential

well" diagram (cf. Fig. 4).

The Schrodinqer eguation (ea. 2.10) has associated with

it two asymptotic boundary conditions:

ik z -ik zu(z) -e z +rp-e z+r-+
V 7 -It/2 /2n

(2.11)

ik z
u(z) ~ t(p) e z z + -

where r(k z ) and t(k z ) are identified as reflection and trans-

mission coefficients respectively.

The problem that was proposed in the introduction has

now been cast into an equivalent auantum mechanical problem:

-22-
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Fig.4 Scattering Potential- Energg Diagram
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Given r(kz), the reflection coefficient, as a function

of vertical wavenumher kz , obtain the scatterinq potential

V(z) in equation (2.10).

2.2 Survey of Inverse Methods

2.2.1 Introduction

Much of the backqround methodoloqy relevant to our

problem is found in the aeophysical literature. An excellent

review of the field is provided by Newton (1 2 ,1 3 ).

The seismic inverse problem for horizontal layered media

of infinite depth consists in determininq the vertical

structure of the acoustic medium (specified usually by

impedance, or, in more detail, b1 density and velocity) from

reflection measurements. But for a few exceptions, most of

the previous analyses have been confired to excitation with

an impulsive pressure siqnal (6-function) and probinq at

normal incidence. The Fourier transform of a 6-function is

essentially flat in frequency domain. What is observed with

such an excitation is, therefore, the time trace of the

resultinq medium response or its Fourier transform. Because

of the assumed horizontally layered structure of the medium,

and the vertical direction of the siqnal, acoustic properties

of the medium chanqe only with depth and thus the problem is

one-dimensional.
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In what follows, we present a review of that past

inverse nroblem work that is relevant in several different

respects. First, the discussion of the Gelfand-Levitan ap-

proach is particularly relevant because this is our basic

approach in this thesis adapted to the Frisk experiment.

Next, the discussion of prior work on single frequency

excitation, launched at non-normal incidence presents the

state of the problem before we addressed it.

The Deift and Trubowitz method is described because

Stickler, having been briefed on our work, adapted the Deift

and Trubowitz method to the Frisk experiment and was able to

devise an alternate approach to its analysis.

The discussion of the Schur algorithm reviews the

analysis by Yaqle and Levy of probing with an impulsive

excitation also at non-normal incidence. We comment on why

Yanle and Levy dismissed the Gelfand-Levitan approach as

inferior to the Schur algorithm although we have in fact,

successfully adapted Gelfand-Levitan to the solution of the

monochromatic, non-normal incidence problem.

The Riccati equation method is discussed although it was

not used. We considered this approach and believe it to be

promising, but this method was not fully explored.

-25-



2.2.2 The Gelfand-Levitan Approach

The problem that was proposed at the end of Section

(2.1), the reconstruction of the potential of a Schrzdinqer

equation from the reflection coefficient, is related to a

classic problem of quantum scattering theory: How to

reconstruct a Sturm-Liouville differential equation from its

spectral function. The i-roblem was solved in a celebrated

paper by Gelfand and Levitan (14) who, since they were

discussing the radial wave equation, were interested only in

a solution on the half-line 0 < r < - (standing-wave

problem). Subsequent developments (e.g., (15)) led to

formulations on the full line -- < z < - in terms of such

readily measured quantities as the phase shift or reflection

coefficient (traveling-wave problem). An excellent distil-

lation of these ideas is to be found in the paners of

Faddeyev( 16 ), while a more general survey of the field of

inverse scattering has been carried out more recently by

Chadan and Sabatier ( 1 7 ) . The interrelation between the dif-

ferent approaches and their time-domain interpretation has

been presented by Burridoe (8 ) . A detailed theoretical

presentation and extension of the Gelfand-Levitan theory and

its application to our problem will be taken up in

Chapter IV.

The exploitation of the Gelfand-Levitan formalism out-

side of cuantum mech3nics was first taken up by Kay( 1 9 ) and

Moses and deRidder (2 0 ) to solve problems in electromagnetics
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such as the characterization of transmission lines and

dielectrics from scattering data. The possibility of mono-

chromatic probing is mentioned briefly but not pursued. An

interesting by-product of this research is the theoretical

construction of dielectrics which are reflectionless at all

freauencies.

The Gelfand-Levitan approach was introduced into the

field of seismic exploration by Ware and Aki ( 2 1 ) . They

presented an analytic approach to the inverse scattering

problem for elastic wave propagation in a stratified medium

when the medium is probed with impulsive plane waves at

normal incidence. The analytic solution was obtained by

transforming the equation of motion in a stratified elastic

medium for plane waves at normal incidence into a one-dimen-

sional Schrodinqer equation. The potential of the resulting

Schrodinger equation depends only on the impedance of the

medium as a function of travel time. No ambiguity arises

owing to the bound state solutions of the Schrrdinger equa-

tion. Ware and Aki went on to establish a discrete analogy

of the continuous solution showing again that the impedance

of the medium could be recovered as a result of probing at

normal incidence when the medium consists of a homogeneous

half-space of impedance poc0 in contact with a sequence of

n homogeneous layers of impedance Plcl,p2c2,...,pncn and

terminates with a homogeneous half-space of impedance

Pn+lcn+l. The sequence of n homogeneous layers which have
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thickness An i and which are chosen such that travel time

throuqh each laver is a constant,

Ani/c i = At 
= constant

constitutes what is known as a Goupillaud layered medium.

An elecant solution oj' the inversion of a Goupillaud

medium has been given by Claerbout (2 2 ) using z-transforms.

Ware and Aki showed the equivalence of the Goupillaud solu-

tion and of the discretized version of their continuous

solution. They had promised a second paper dealing with the

inverse scattering problem for plane waves at non-normal

incidence. Such a paper was, however, never published.

Although Ware had obtained in his thesis some partial results

at non-normal incidence prior to the publication of the Ware

and Aki paper, the anproach in the thesis was too cumbersome

and in fact had hit an unsurmountable wall at and above the

critical anqle: the reflection coefficient tends to one as

w + and therefore fails to meet an integrability criterion

required in the application of the Gelfand-Levitan algorithm.

The question arises as to how our approach, a monochro-

matic experiment at all angles of incidence, relates to the

Ware and Aki experiment of an impulsive broadband source at

one angle of incidence? The vertical wavenumbers generated

in Ware and Aki (normal incidence) k = 2- (for 0 < w <7 C

Cover the range from 0 to - as the frequency is swept. One
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can see from Fig. 5 that in our experiment kz = kocos8 (for

0 < cose < w) formally covers the same range of values of kz

although the experiment is monochromatic. There is, however,

a fundamental difference between the two approaches in that,

as we prove in Chapter III, the reflection response in our

monochromatic experiment is inteqrable and in fact goes to

zero as kz goes to infinity at least as fast as (1/kz
2 ). It

should be noted that Ware and Aki did not run any computer

simulations of their algorithm, and were therefore unaware of

its numerical performance (in fact, the Gelfand-Levitat.

approach was widely held at the time to be numerically

unstable).

Inspired by the Ware and Aki approach, a number of

researchers particularly Ahn, Jordan, and Kritikos (2 3'2 4 ,2 5 )

applied the Gelfand-Levitan algorithm to the analytical

problem of the reconstruction of dielectric functions and

electron density profiles. Their work is an analytical

attempt to solve the problem when a dielectric medium is

probed with impulses at normal incidence. Most of their

effort was applied to the closed-form solution of the

Gelfand-Levitan equation. Such a solution is possible when

the reflection coefficient can be represented as a rational

function of wavenumber. Although the approximation of the

reflection coefficient by rational functions has not yet

received any practical application, the availability of such

closed-form solutions provided us with valuable canonical

examples against which to check numerical inversion results.
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Fig. 5 Generation of Vertical Wavenumbers in the
Ware and Aki Method and in the Frisk Experiment
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More recently, Berryman and Greene( 26 ) have addressed

some lonq-standinq auestions recardinq the qeneral anplica-

bility of the Goupillaud method. They demonstrated the

equivalence of the Goupillaud method of inversion and of the

Marchenko method (15 ) for the Schrodinqer equation for models

with arbitrary layer thicknesses (i.e., continuous impedance

variation). When the reflection coefficients are correctly

interpreted, in the continuum limit, both methods will

reconstruct the same impedance except, possibly, for the

values at a finite number of jump points in any finite span

of travel time. As part of this work, Berryman and Greene

presented a fast (0(N2 )) recursive alcorithm analogous to the

Levinson procedure for the inversion of a Toeplitz matrix.

We were able to adapt this alqorithm and use it in our numer-

ical computations.

During our research, we became aware of an unpublished

report by Jacobs and Stolt (27 ) which demonstrates four

different coordinate transformations which convert the

laterally homogeneous acoustic wave equation of the

Schrodinqer form. One of the transformations takes frequency

w to be a fixed parameter which infers our monochromatic

condition. However, Jacobs and Stolt use a slightly

different potential function than the one chosen in this

thesis. Their effort to verify the Gelfand-Levitan algorithm

is similar to the one presented earlier by Moses and

deRidder( 20 ). In discussing the Gelfand-Levitan algorithm,
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they make the important assertion that the alqorithm holds

even for the case of dissimilar end potentils. We have

presented, independently, a riqorous proof of that assertion

in Chapter IV.

The method of Carroll and Santosa( 28 ) was used by

Santosa ( 2 9 ) to solve the inverse problem for an impulsive

source at normal incidence. Althouqh the method is similar

to the Gelfand-Levitan approach, it is not based on the

Schrodinqer equation but rather on the equation

v+ v = q(y)v' (2.12)

where v is the Fourier transform of the shear displacement

and a(y) is related to the chanqe in the impedance A(y) by

=(y) .- . (2.13)

The measured response q(t) = 6(t, x = 0) is transformed

into the spectral density G(w)

G(w) = -2w q(t)exp(iwt)dt . (2.14)
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The Gelfand-Levitan type eauation that is to be solved is

then

y
T(y,z) + K(y,z) - f K(y,n)T (n,z)dn = 0 , z c y

0

(2.15)

where T(y,z) is given by

T(y,z) = sin z coscay[G(w) - 2]dw (2.16)
0

and the impedance profile is recovered from K(y,x) through

0(y) = - K(yy) (2.17)

The major difference from the standard Gelfand-Levitan

procedure is that in (2.15) the kernel T is differentiated

with respect to n.

Santosa ( 30 ) refined the method to give it a time-domain

meaninq by applying it to problems in which the response data

are given for a finite time. The representation obtained is

similar to that in the Gopinath-Sondhi eqtuation( 3 1 ). Santosa

demonstrated the method to be stable both theoretically and

numerically on a window type profile. Reconstruction errors
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at denth are attributed to errors in the reflection data and

to the first order discretization errors committed in the

approximation of an inteqral by a sum.

Coen has extended in one of his napers (3 2 ) the work of

Ware and Aki so as to recover both the density and compressi-

bility profiles of a layered fluid from the plane wave

reflection coefficient at two precritical anqles of

incidence, and at all frequencies.

In another paper( 3 3 ), Coen applied the Ware and Aki

method to recover the three elastic profiles of a layered

half-space from three reflection coefficients. First the

shear modulus and density profiles are determined from

reflection coefficient data for oblique incidence SH plane

waves qiven at two anqles of incidence and for all

frequencies. Once the density and shear modulus have been

obtained, a further experiment usinq the reflection coeffi-

cient due to an impulsive normally incident P-wave permits

the retrieval of the P-wave velocity and hence of the Lame

profile. The limitation in Coen's work, as in Ware and

Aki's, is that the potential V( ) satisfy the inteqrahility

condition.

I (1 + )IV( )d < - (2.18)

0
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which would he very restrictive in practice. One result we

demonstrate in our work is that the Gelfand-Levitan alqorithm

still applies to the fundamental case when V(C) tends to a

non-zero finite value at infinity in violation of the above

intearability condition.

In a third paper (3 4 ) , Coen addresses the problem of

common source noint surface data wherein a source is placed

on the free surface of a plane stratified half-space and the

vertical component of velocity or of acceleration is measured

on the free surface. After solvinq the impulsive source

problem, Coen discusses the monochromatic source problem.

His approach is deceptively similar to the one we present in

this thesis as both approaches transform the oriqinal problem

into a one-dimensional Schrodinqer equation and then proceed

to use the Gelfand-Levitan inteqral equation to solve the

inverse problem. However, the problem in the two approaches

is posed in a different way and the steps towards the solu-

tion are dissimilar.

It is useful here to run throuqh Coen's method so as to

point out the difficulty he encounters and which does not

arise in our approach (a constant density is assumed).
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The Hankel transform of the pressure field

¢( , , ) = f r n(r,z,t)rJ 0(r,O)e d t

0 0

(2.19)

satisfies the Schrodinqer equation

( - k 2 ) (k,z, ) = O(z,w)O(k,z,w) • (2.20)
az

where Q(z,w) is the potential

2 c2

Q(z,W) =(1-(2.21)
2 2)c 0 c

and k is related to the horizontal wavenumber throuqh

2
= /k + (2.22)

c
0
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The Schrodinqer equation is accompanied by two initial

conditions

I 1

o z--O = - -(2.23)

where

q(Etw) = _ (2.24)

and d(C,w) is the Hankel transform of the vertical component

of particle acceleration at the surface z = 0.

Coen's scheme proceeds from an input function r(k,w)

r(kw) = 1 - kq(k,w) (2.25)r~k, ) 1 + k(k,-T"

given for all real positive k values and requires the compu-

tation oi R(z,w) where

r(k,w) = f R(z,w)e- kzdz (2.26)
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The Gelfand-Levitan equation

z
=zyw) = R(z+yw) + f A(zxw)R(y+x)dy I - z

-Z

(2.27)

is then solved for A(z,y) which in turn yields the potential

O(z) = 2 -- A(z,z) z > 0 .(2.28)dz

The difficulty with the whole procedure stems from the

second step, namely the computation of R(z) from r(k). That

involves an inverse Laplace transform which is numerically

inherently unstable. Our method, on the other hand, starts

off from the Schrodinger equation for the field (rather than

for its Hankel transform) with the associated plane wave

reflection coefficient as a function of vertical wavenumber.

The Laplace transform of Coen's approach is replaced by a

Fourier transform which does not present any numerical diffi-

culties. It is to be noted that the known numerical

instability of the Laplace transform has led some

researchers, notably Santosa and Symes(4 2 ) to dismiss the

Gelfand-Levitan approach to the solution of the inverse

oroblem. We believe that our approach to the inverse problem

could lead to a positive reassessment of the Gelfand-Levitan

inverse method.
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2.2.3 Single Frequency, Non-Normal Incidence

Very few researchers other than Coen have considered the

single frequency non-normal incidence case. One exception is

Mittra and Schaubert (35 ) who used a method different from

ours. Their approach is a spectral domain method of probing

stratified, lossless, dielectric media using an alternative

to the Marchenko formulation and resulting in a Fredholm

equation of the second kind which is solved through the use

of rational basis functions. They noted that accurate

inversions can be obtained if data is provided for kz >> ko.

The Mittra and Schaubert examples all have zero terminal

potentials, and although the results are good in general, the

inaccuracies are interestingly larger near the origin with

higher frequencies "seeming to give better resolution." (3 5 )

Another example of the prior single frequency, non-

normal incidence analysis is provided by the work of

Roger (36 ). Roger sought to determine the index profile of a

dielectric plate backed by a perfectly conducting plane.

That last fact complicates the problem, since the potential

is always negative and bound states due to surface waves

might exist. Roger starts from a nonlinear integral equation

which he linearizes to obtain a Fredholm equation of the

first kind whose solution constitutes an ill-posed problem

(in the sense of Hadamard). Roger solves this equation by

using the Tikhonov regularization method. The method fails

when the permittivity e(z) exceeds a constant by more than

20% and also when the layer is thicker than 1.5x.
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2.2.4 The Deift and Trubowitz Method

Deift and Trubowitz (37 ) introduced the trace method for

determining the potential in one-dimensional scattering

problems for the Schrodinger equation. The trace method

requires as data the reflection coefficient, while the method

we adopted requires the Fourier transform of the reflection

coefficient. Furthermore, the trace method requires the

solution of a nonlinear differential equation while the

Gelfand-Levitan (or Marchenko) equation that we use is a

linear integral equation.

Stickler visited us in Woods Hole and became interested

in adapting the Deift and Trubowitz trace method to our

problem. He took the same input, i.e., the measurement of

the pressure field as a function of range, where both the

real and imaginary parts of the pressure field are needed.

After the reflection coefficient R(k) is derived by using the

same approach as ours, he then introduces an auxiliary

potential, -(z), which is determined by using the trace

formula methods of Deift and Trubowitz. Stickler (7 ) defines

the auxiliary potential, -(z) by

(z) = q(z) - P,(--.-) (2.29)

P

where primes denote derivatives with respect to z. The auxi-

liary potential, q(z), can be determined from the Deift and

Trubowitz trace formula
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4 22

(z)= - km[R(k)u 2 (z,-k)Idk (2.30)
7 02

The Jost function u2 (z,k) in (2.30) is determined by solving

-un + q(z) u2 = k2 u 2  (2.31)

with the boundary condition

e-ikz + (2.32)

Deift and Trubowitz have shown that the usual iteration

scheme for solving two coupled nonlinear integral equations

such as (2.13) and (2.14) converges. In our case, instead of

(2.13) and (2.14), we solve for '(z) using a Gelfand-Levitan

linear integral equation.

Stickler presented two numerical examples (7 ) of applying

the Deift and Trubowitz algorithm on a twice continuous

function (in Chapter VI we apply our method to one of his

examples and refer to it as the "Stickler's Profile"). Since

Stickler generated the reflection coefficient from the solu-

tion of a Riccati equation, he had control over the local

tolerance for the determination of the reflection coeffi-

cient. As in the Gelfand-Levitan method, the results are

excellent for z/L << 1, but deteriorate gradually with depth

(z/L > 1). Stickler attributes the degradation of his method
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to the lack of accuracy of the local reflection coefficients

generated via the Riccati equation.

When we compare Stickler's numerical results to ours, we

observe the general similarity of his results to the ones

described in this thesis. This similarity should not be too

surprising in view of the close relationship between the two

methods (see further discussion in Chapter IV). We have no

data to assess the computational efficiency of Stickler's

method versus ours.

2.2.5 Schur Algorithm

Yagle and Levy (38 ,3 9 ) have adopted an algorithm which

reconstructs the unknown acoustic medium layer by layer

(layer stripping procedure). The method is analogous to the

downward continuation method, in that successive up and down-

qoing waves are measured at the surface. The first

reflection of the impulse yields information about the medium

immediately beneath the surface (at depth A). This informa-

tion is used to update the waves at depth A which then

becomes the new reference surface. The procedure is succes-

sively repeated until the depth of interest is reached. The

Schur algorithm applies to the study of the two component

system of coupled differential equations

qlx(x,t) + qlt(xt) = - r(x) q 2 (x,t)

q2x(x,t) - q2t(xrt) = - r(x) ql(x,t) (2.33)
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where the subscripts x and t denote derivatives with respect

to x and t, and r(x), the reflectivity function, provides a

coupling between the downgoing wave ql(x,t) and the upgoing

wave q2 (xt) (unit velocity).

Yagle and Levy begin their derivation with the set of

equations arising after an initial impulse excitation 6(t),

so that ql(x,t) and q2 (xt) can be written as

ql(x,t) = 6(t-u) + l(x,t) u-l(t-u)
(2.34)

q2 (xt) = q2 (xt) u-l(t-u) I

in which causality has been used (no waves exist for t < u).

From (2.33) and (2.34) Yagle and Levy derive

r(x) = 2q2 (ux) (2.35)

The equations (2.33) and (2.35) constitute the continuous

parameter fast Cholesky recursion where ql(x,t) and q2 (xt)

are updated to yield r(x) from equation (2.35).

At this point, the application of the Schur method

entails taking the Fourier transforms of the system in

(2.33). Denoting the transform of q by q, we get:

qlx= - iwql(x,w) - r (x) q 2 (xw)

(2.36)
A A

q2x= - r(x) ql(x,w) + iwq2 (x,w)

Yagle and Levy thus find a reflection coefficient
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* _ q2 (x,w)

R(x,w) - (2.37)

Aal(x,w)

which obeys a Riccati equation

2 (2.38)
R = 2iwR(x,w) + r(x) (R(x,w)-1)(.8

with

r(x) = lim [2iw R(x,w)] . (2.39)

Equations (2.36), (2.37), and (2.38) constitute the Schur

algorithm, while (2.38) and (2.39) represent a continuous

parameter dynamic deconvolution algorithm. It is to be noted

that the discretized Schur algorithm is similar to the fast

recursion procedure of Berryman and Greene.

Yagle and Levy assert in the concluding section of their

paper that their Schur algorithm is computationally superior

to the Gelfand-Levitan algorithm as used by Coen. This

observation may be true of the Gelfand-Levitan procedure for

impulsive sources at non-normal incidence as presented by

Ware and Aki (2 1 ) and by Coen (3 3 ), but it certainly does not

apply to our approach. Yagle and Levy's main objection to

Gelfand-Levitan is that the boundedness of the potential
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f (I + l)IV(T)Idr < (2.40)
0

may not be satisfied at non-normal incidence. However, we

show in Chapter IV, that the Gelfand-Levitan algorithm can in

fact be applied even for a non-zero end potential which would

render the integral ir. (2.40) infinite. Moreover, the Frisk

experiment studied here is performed at a single frequency

and not with an impulsive excitation. We have shown that the

monochromatic reflection coefficient as a function of verti-

cal wave number is integrable so that the negative comment of

Yagle and Levy does not apply to our work.

Although not stated in their paper, the application of

the Schur algorithm to the inverse problem in a layered

acoustic maedium involves implicitly approximations similar to

those inherent in the Claerbout's migration method. Although

the Schur algorithm constitutes an improvement over migration

in so far as the downgoing wave strength is modified by the

upgoing wave strength it is still an approximation. Indeed,

in some of our earlier unpublished work, we succeeded in

improving the Claerbout migration method precisely by

introducing the coupling between the reflected and the down-

going wave. By contrast, our Gelfand-Levitan approach is not

an approximation and except for numerical computation

represents an exact formulation of the problem.

-45-



2.2.6 Riccati Equation Method

One method which we considered upon Stickler's sugges-

tion and which appears to have considerable potential is

based on the Riccati equation. Reflectivity as a function of

travel time x obeys the Riccati equation
(12 )

dr = _ 2ir - Y(T)(i - r2  (2.41)
d-r

with boundary condition r(w,-) = 0 in which

Y(T) 1 dZ (2.42)=

where the acoustic impedance has been defined by

Z(T) = /4- (2.43)
z

The inverse problem is here that of reconstructing Z(z)

from surface observations of r. To get Z(z) from Z(T)

involves further assumptions. We can formulate the problem

equivalently by writing

r(w, )= f dr' y(T')e 2--r2(WT) (2.44)
T

while at the surface, the reflection amplitude is

r(w,o) = d- (T)e(iWT )(-r2(to 'T (2.45)
0
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The last two equations can be regarded as a nonlinear

mapping of r(w,O), given as a function of w, into y(T). The

aim of such an approach would be to reconstruct y(T) from

r(w,O). Although the existence of a complete solution to the

above problem has not yet been demonstrated, an approximation

can be derived. An inverse Fourier transform of (2.28)

yields

r(t) = d w dhe ( 2 iwT)r(w,O)

D2 [ 2 i 2( '-)]
+ - f dw f dr'a(T )r (w ,r') xe

(2.46)

The first approximation to the solution is the Born series

term, namely

y(T ) = dw r(w,O)e-2 iwT (2.47)

which resembles the first term of our own result. The

convergence of the iteration series solution has not yet been

established, but the approach as formulated by Nilsen and

Gjevik( 4 0 ) appears promising.
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It is useful here to note that a Riccati equation still

applies in the presence of density discontinuities. The

equation obeyed by the pressure p is

p-1 p')1 + (k 2 _ V)p = 0 , (2.48)

where V is the potential.

The reflection coefficient may be obtained at the

surface from the continuity of pressure and vertical velo-

city.

R(k)Iz.o P . (2.49)

The ratio of vertical velocity to pressure, i.e., the admit-

tance,

U - (2.50)
p

is continuous even in the presence of material discontinu-

ities, as it is the ratio of two continuous quantities. The

admittance u obeys a Riccati equation,
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utP 2 (2.51)U' = - 0 - (251

in which k = (k2  V)
p-

Note that u(z=0) 1ik(1 R)
1+ R

Let u(z) = ik - W(z))I + w(Z)

It follows that W(O) = R(k)Iz=O , and W(z) itself obeys a

Riccati equation

2ikW' - 2W(Q + pk 2 ) + W -2(pk - 0) = (Q - pk 2

(2.52)

which can be used to generate the reflection coefficient in

the direct problem or to use an iterative procedure for the

inverse problem. We did not pursue this approach further but

it merits further study.

We have covered here those papers that were most

relevant to the work that follows. It should be noted, how-
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ever, that there are a number of other interesting inverse

methods that have not been included in this review.

Particularly noteworthy are the papers by Moses (4 1 ), Gopinath

and Sondhi (3 1 ), Santosa and Symes (4 2 ) and others (4 3 ,4 4 ).

Also of interest is additional literature on the approximate

inverse methods. 5 5 57 ) • Special mention should be made of

methods based on the Born approximation which originated with

the seminal work of Cohen and Bleistein (45- 5 4 ).
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CHAPTER III

THE REFLECTION COEFFICIENT

3.1 Introduction

The plane-wave reflection coefficient as a function of

vertical wavenumber r(k z ) is central to the inversion proce-

dure we adopted to solve the inverse problem. Its symnetry

property is shown to follow from the integral equation repre-

sentation of the field. We then derive its asymptotic behavior

for large k by induction and show that r(k ) is integrable,zz

and hence is an acceptable input to the inverse method presented

in Chapter IV.

3.2 Definition and Properties of the Reflection Coefficient

Consider the problem of a plane wave

ik z
i (z) = e z

incident from z = -- onto a half-space extending from z = 0

to z = +-. The half space is characterized by a potential

V(z). V(z) is all that is needed to describe the scattering

of the incident wave Ki(z) by the acoustic half space:

ik z 00
0z) = e z + G(z,z') V(z') (z')dz' -- <z <

-OD (3.1)
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where the Green's function G(z,z') is determined by

G(z,z') e eik l-' (3.2)
2ik

z

It follows that as z -- o

0pz) =e kzz+ e -kzZ f e kz V(zI) Opz')dz'

ik0 zi 33

and the coefficient of e ikzcan be identified as the

reflection coefficient.

r~~k 1 00 +ik zz' Vz) z~z

rZ) = 2jFk f ~' pz)z

(3.4)

The integral representation of the reflection coefficient

allows a simple derivation of the symmetry properties of

r(k z) in the complex plane.

From (3.4)

CO-ik z'

r(-k) 1= - iz V(z') Opz', - k ) dz'

(3.5)

But, for a real potential V(z) and for real k z, Schrodinger' s

equation shows that when flz',k z) is a solution, so is

0~z', -k ). Moreover, p(z', - k ) = U*(z',k z) which

implies
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r(-k ) r*(k Z) (3.6)

The result can be extended to the complex plane through

the use of the Schwartz reflection principle,

r(-k z*) = r*(k Z ) (3.7)

in any region of analyticity connected with the real k axis.

(This constitutes the analytic continuation of r(kz)).

Now, the Gelfand-Levitan algorithm requires

knowledge of r(k z) for all real k z . However, the symmetry

property expressed in (equation 3.6) demonstrates that

knowledge of r(kz ) on the half-line of 0 < kz <- is

sufficient.

Note that when the vertical wavenumber k = k cosO
z 0

is real and larger than the water wavenumber k0, the angle

of incidence becomes imaginary. That can be verified by

requiring that cosO = cos(0 r + iO.) be real. And since

cos(Or + iSi) = cosorcoshO. - i sin0 r sinhO i

it follows that ®r =0 and k. = k0cosh0 i for k0 < k < .z

The mapping between the kz-plane and the 0-plane is drawn

in Figure 6.
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Im(k), Im(e)

0 Re~ 0ee

Fig. 6 Mapping from the kz-Plane into the 0-Plane

- 54 -



3.3 Asymptotic Behavior of the Plane Wave Reflection

Coefficient

The input to both the Gelfand-Levitan algorithm

and to the Born approximation is the Fourier transform of

the reflection coefficient

ik z
R(z) = J r(kZ ) e z dk z

The properties of r(k z ) as k z- are studied for two

simple cases and then generalized.

(a) Half space

The reflection coefficient is given by

zI - z
r(k z ) - 1 (3.8)

Zl1 + z

where the impedance Z = pc/cosO or

P W 0
Z = k- (3.9)

kz

Therefore,

r(k kz zl (3.10)
z kZ+ kz z5
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And since kx is continuous,

k 2  (k1 2  k 2) + k 2 (3.11)zl 1 0 z

and

k k022)  2'

r(k) k z (3.12)z k z + (kl 2 - k0
2 ) + kz 2 "

Ask
z

k -k(1 + -1Z (k12 k 02

r(k z  2 (3.13)

k + k z ( 1 + - (k kZ Z 2k2  1  0z

- l(k2 k2)/kz2
4 1 0 )/k

Hence,

r(k Z) k-- 0 as (1/kz 2

z

When density variations are considered,

r(k ) mcose - ncos 1 (3.15)mcosO + ncos01
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where m = p1/P and n = kl/k 0

r(kZ) = z - kzl
k+k

mz kzl

As k z  - -

m~~ ~r-I) + 1k12 k- 2 2
r_(kz) _ m + ( 2 _ 2)/2k z

2  (3.17)

which still decays as (1/kz 2 ), but tends to a finite
rn-i

limit ( m+1 ) as kz

Therefore, the Fourier transform of r(k z ) involves

generalized functions,

m r-i

F(r(kz)) (--)6(z) + (analytic function) (3.18)

(b) One Layer Case (cf. Figure 7).

The reflection coefficient at the (0 - 1) interface

is
Z1 - Z Z2 -z Z 2iklzd

1 + ZO (Z 2 + Z 1) e

r(kz) - Z0  Z2 - Z 2iklzd

1 + (Z1 + Z0 2 ) e

(3.19)
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zo

ZI dl

z 2

Fig. 7 One Lager Case
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The analysis of the terms within parentheses is

identical to the analysis carried out in the previous section.

One can conclude immediately that

r~k ) ~ 2 2 2 2 2ikd

r(k Z )  , [(k 1
2  k02) + (k2  

- kl 2 ) e z ]/4k 2
k -).00

z

0 as (1/kz 2 (3.20)

Note:

The delta function potential

V(z) = AS(z) (3.21)

can be considered as a limiting case of the one-layer

problem. It has associated with it a reflection coefficient
(20 )

r(k) = i2k + iA (3.22)z

which goes to zero as k z  but only as (1/k z ) in apparent

violation of the result just derived. The reason is that

in a delta function potential, V(z) - which implies

(k02 - kl2 )  =, invalidating the binomial approximation to

the square root used in section (a). However, the formula-
2

tion of the acoustic problem requires V(z) < k0 which is

finite ( as long as the frequency u 0 is finite). Therefore,
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delta-like potentials do not arise and the binomial

approximation is valid.

(c) General Case

The expression for r(k z) given in the previous

section can be rewritten in the general form

2ikzd1

R01 + R2 e lz
r(k z) = 2 e 2 iklzdl (3.23)

1+ R 01 R 12

2 -2ik -d1
1 [1 - (1/R 0 1 ) 2 e 

(3.l z d

R0 +  1- -2ik zd (3.24)
(R 1 ) e 1+ R12

01

The reflection coefficient can be readily generalized

to include stratified media (58 )

R = 1 [1 - /R 0 1 ) 2] e-2ikdlzd 1

RO1  e 1 -i2k lzd1

01

+ [1 (1/R 12 2 ) -i2k 2t (d 2-dl1)
[ 1 - (/ 1 )]e 2~

2-i2k (d )

/[1 -(I/R 2 ( n l ) n ) ]e nz n-dn- 1

RI-i2k (dn - dn)
R(n-l)n / w l/n l)n le- nz (dn -dn-1)

+ Rn+l (3.25)
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The continued fraction representation of (equation 3.25)

indicates that the partial reflection coefficient Rl2 (kZ )

in (equation 5.23) could represent the reflection

coefficient due to a complicated medium rather than to a

simple homogeneous half space.

The asymptotic behavior of r(k z ) is deduced in a two

step process. Assume the configuration of Figure8

with RI(k z ) (- as k
z

Adding a new interface to the set-up (Figure 9 )

and using equation (5.24),

2 4 2 -i2kzd 1r (1 - k4/82) e Zr(kz) + 2
z k -2ik d.

e + 2
k

z

k 2 kk2

z z

2 2 4ik d1+ 8 e z +...)

kz

(3.26)

Therefore,

2
r(k -- 0 as (i/k z ) (3.27)rkz ) k

z
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Fig. 8 Stock of Isovelocity Layers
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0 r(kz)

R R12

2

Fig.9 Adding a Top Lager to the Stack in Fig.8
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The argument just presented is, in fact, the last step in

a proof by induction of the proposition that r(kz ) -* 0

as (1/kz2 ) in the presence of a homogeneous half space.

The proposition was proved true for one or two interfaces

was assumed true for an arbitrary number of interfaces and

was shown to hold for one more interface. This result

should be contrasted with the corresponding situation in

the Ware and Aki experiment; For angles of incidence

greater than critical, they were confronted with the

fact that r(w) -1, as - - -, and could not proceed with the

Gelfand-Levitan inversion procedure.
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CHAPTER IV

THE ONE-DIMENSIONAL INVERSE PROBLEM

This chapter presents the derivation of our approach to

the one-dimensional inverse problem. The results yield the

methodology underlying the numerical computations described

in Chapter V. The derivation exploits the equivalence

between the acoustic problem and the corresponding quantum

scattering problem as presented in Chapter II. A major dif-

ference between the two is the boundary conditions. Whereas

in quantum mechanics, the unknown slab is surrounded by

isovelocity space (zero end potential), in the acoustics

problem, as applied to the ocean bottom, differing velocities

have to be accommodated above and below the slab (non-zero

end potential). The solution to the inverse problem detailed

in this chapter consists of an extension of Faddeev's

method(16) for deriving the scattering matrix in the case of

zero end potential (or integrable potential) to the case of

non-zero end potential which is representative of the reflec-

tions from the bottom of the ocean. We are able to solve the

problem analytically, in part, because of its one-dimensional

modeling. Our technique is related to that applied by

Stickler to a similar scattering problem.
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4.1 Introduction

The deteumination of the potential V(z) in the

Schrt5dinger equation

- V(z)]*(z) = 0 (4.1)
dz

from scattering data suc& as the reflection coefficient

constitutes the one-dimensional inverse problem.

Two scattering solutions of the Schr?5dinqer eauation are

defined by their asymptotic behavior (p is the vertical wave-

number also referred to as kz):

ipz -IDZ
e + s1 2 (p) e as z -

=IZD (4.2)
1 ) s 1 1 (p)e z + + (

--ipz n

e + S2 1 (p)eiZ as z + +

(Z, ) (4.3)
Pz z + -

The matrix of coefficients

(s11 (p) 12)

21() 22
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is known as the S matrix of the Schrbdinqer equation. The

element sl 2 (P) corresponds to the plane wave reflection coef-

ficient determined in the WHOI experiment.

Faddeev( 1 6 B) has shown that S1 2 (P) may determine all the

elements of the S matrix and hence is sufficient to obtain

the scatterin potential 11(z). However, these results have

an important practical restriction, namely, that the end

potential tends to zero; i.e., V(z) + 0 as z + . They are

reviewed in the first part of this chapter.

In the second part of the chapter, we present an exten-

sion of the theory to include the qeophysically siqnificant

case of a finite end potential, V(z) + V1 as z + -. Finally,

an appropriate choice of source frequency is shown to elimi-

nate trapped modes.

4.2 Properties of the Solution of the Schrbdinger

Equation (V]=O)

Two fundamental solutions of the Schrbdinger equation

are introduced,

u1 (z,p) - e as z + + G (4.4)

u2 (z,p) - e- as z + - G (4.5)
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The method of variation of parameters leads to a

representation of ul(z,k) and u2(z,k) as solutions of

Volterra eauations of the second kind(16 )

u1 (z,p) =eZ -rzsnT(-l Vz) u(z',p))dzl (4.6)

S2 (z,p)) e= e + f sipz-) VzU 2 (z',P)dz' .(4.7)

-mD

But, since the Schr~dinqer equation is symmetrical in p,

ul(z,-p) and u2 (z,-p) are also solutions of (eq. 4.1). The

solution pairs [u1(Z,P), ul(z,-p)J and [u2(z,P), u2 (z,-P)I

are linearly independent since their Wronskians obtained from

their asymptotic form (eqs. 4.4, 4.5)

W(u11 u 1 ) 2in

(4.8)
W(u 2 'u2* = -2ip

are non-zero for P * 0.

Now, any solution of the Schr~dinger equation can be

written as a linear combination of two independent solutions.

In particular,
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u 1(z,n) = U2 (z'p)c 22 (p) + U2 (z,-P)C21(p) (4.9)

* 2 (Z') = U I(z,p)c11 (o) + U1 (Z,-P)c12 (p) .(4.10)

The next section examines some properties of the coefficients

cii(k) which will later be shown to be closely related to the

elements of the S matrix.

4.2.1 Properties of the Coefficients SJ2

The coefficients cij(p) can be expressed as Wronskians

by "takinq Wronskians" of both sides in equations (4.9 and

4.10). For instance, from (equation 4.9)

W(U 1(z,p) ,u2 (z,p))= W~u vu 13c11 (p)

+ W[u 1 (z,p) ,u1 (z,-p)]c 12 (p).

We know, however, that in (4.11)

W~lul= 0 (linearly dependent functions)
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and

W[u 1 (z,p),ul(z,-p)] = 2iP (cf., eq. 4.8) . (4.12)

It follows that

ci(P) w[u (z,n), u2(z,p)] . (4.13)c12(P 1 2

One can show similarly that

c 2 1 (p) = c 1 2 (p) (4.14)

ell(P) = -C 2 2 (-p) - . W[u 2 (z,-p),u (z,p)] (4.15)

Using the values of cij expressed in this form, and substi-

tutinq ea. 4.9 into eq. 4.10, one aets the compatibility

relations,

cll(P)c 2 2 (P) + c 2 1 (P)c 1 2 (-p) = 1

(4.16)

Ic12(p)1
2-1C11(p)12 

1
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and,

c 1 2 (P)c 2 2 (P) + cl (-P)c2 1 (p) = 0 . (4.17)

The asymptotic form of u2 (z,k) in (ea. 4.7) for z +

u+(z,p)= e-i [ I - - fI ei v(z')u2(z )dz']

+ einZ - - i p z '  (4.18)

+ I- f V lW ')2(z )dz '

leads by comparison with (eq. 4.9) to the identifications:

Cl2 (P) = 1 - 2 pjI V(z')u 2 (z')dz' (4.19)

1 0 -ipz'
c1 (P)= f e V(z')u 2 (z')dz' (4.20)
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Usina the orevious estimates for u2 in eq. 4.5 and the

Riemann-Lebesaue theorem, it can be seen, that for larqe p,

is o(l/-) and cM(p) is moreover, c 1 2 (p) is

analytic in the upper half plane, does not vanish on the real

p axis, and has only a finite number of simple zeros on the

imaainary axis.

4.2.2 Properties of the sij(k) Coefficients

One is now ready to return to the oriqinal scatterinq

problem and its associated 9 matrix.

*l(Z,p), the solution of the scattering problem of

interest, can be written in terms of the linearly independent

solutions u2 (z,p) and u2(z,- p )

*1(Z'p) = u 2 (z,-p) + s 1 2 (p)u 2 (z,p) (4.21)

= S1 1 (p)u 1 (Zp) • (4.22)

The order symbol o( ) is defined as follows:

f(e) = o[q(e)] as c + 0

if lim f = 0
C + 0
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Writinq out ul(z,p) in terms of u2 (z,tD) as qiven in eq.

4.10, one obtains the compatibility relations

I
c2 1(p)

(4.23)
s 2() = 22(p)

C2 1 (p)

Carryino out the same operation on *2 (z,k), one obtains

s22 (P) = I
c1 2 (p)

(4.24)

s2 1(P) = (pc12(p

From the asymptotic behavior of the Jost functions cij

one can deduce the asymptotics of the S matrix

s11 (o) = S 22 (0) = 1 + O(1/0)

(4.25)
s12 (p) and s2 1 (p) = O(1/p)

The order symbol O( ) is defined as follows:

f(e) = O[q(c)] as e + 0

if lir f(-5 = A 0 < JAI <
r + 0 q ( -
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It can be seen from eq. 4.24, 4.16 and eq. 4.17 that the

S matrix is unitary,

IS 1 1 1 2  + Is1212 Is22 12 + Is21 1 , (4.26)

implyinq conservation of energy, and that since sij(-p) =

S11S*21 + s12s*22 = 0 . (4.27)

The coefficients sij(p) are continuous for real

n, sll(p) being analytic in the upper half plane except for

poles on the imaginary axis (corresponding to the zeros of

Cl2(P)). Conditions (4.26) and (4.27) allow one to recon-

struct the scattering matrix from a knowledge of the reflec-

tion coefficient sl2 (P). In what follows, sl2 (P) is

identified with the plane wave reflection coefficient r(kz )

and s1 l(p) with the transmission coefficient t(kz). Substi-

tuting c21 by (l/t) and c22 by (r/t) in (eq. 4.10), it

follows that

t(p)u1 (z,p) = r(p)u 2 (z,p) + u 2 (z,-p) . (4.28)

The above equation is the basis for the derivation of

the Gelfand-Levitan inversion method that has been obtained

for a potential V(z) + 0 as z + it. Such a potential arises
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in the study of dielectric slabs by electromagnetic probing.

In the earth, however, the velocity c(z) tends to a value c1

larger than the surface velocity co . Correspondingly, the

potential V(z) tends to a positive constant V1 ,

V k~ (. -c

1 5) (4.29)

2 2
k k0 2 k 1 2

Therefore the Gelfand-Levitan inversion does not really

apply, and a scattering solution is needed that allows a non-

zero end potential. In the next section, we present our

approach to this problem.

4.3 Non Zero Final Potential

To accommodate to a non-zero VI, we now consider the

fundamental solution of the Schrl5dinqer equation ul(Z,P)

defined asymptotically as

11 Z + (4.30)

where

/7 --
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We assume Imp') 0, in order to satisfy the radiation condi-

tion at -. The Volterra inteqral equation representation of

ul(z,p) in eq. 4.6 is modified to

= s, )dz (4.31)

z

while the intearal equation representation of u2 (z,p) is

unchanaed

-ipz z sin p(z-z')
(z,o)=e + f s V(z)u 2 (z,,p)dz' (4.32)

4.3.1 Asymptotic Behavior

The key observations to be made relative to eq. 4.31 is

that since ul(z,p) is the solution of a Volterra equation of

the second kind with square integrable kernel, the method of

successive apDroximation will converqe. That observation has

in fact been applied by D. Stickler (7 in connection with the

Deift-Trubowitz inversion procedure; thus, we have

V(z)-VF ipz- =z- &7(v(z')-Vl)dz'
u(zDp)= 1I e z +H.O.T.*

2i ) 2(Imp ) 0)

(4.33)

H.O.T. stands for higher order terms
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from which the transmission coefficient t(p) can be deduced

Vl 1 f0V(z 2p
V 2ip f z')dz'+ (V(z')-Vl)dz'

t(p)=(l- -- ,-2)e 0 +H.O.T.
(2in)

(4.34)

where z0 is arbitrary.

Similarly, (Imp > 0)

1 z
u (Z,-i)z- V(Z l V(z' )dz'

2 V-.z )e + H.O.T. (4.35)
(2ip)

4.3.2 Inversion Procedure

We are now ready to present the inversion procedure for

V1 > 0. Note that the basic relation (eq. 4.28) still holds

for V1 > 0,

t(p)ul(z,p) = r(p)u 2 (z,P) + u2 (z,-p) (4.36)

Followinq Faddeev's (16 ) case of V = 0, for the case of

V1 > 0, a function h(z,p) = u2 (z,p)eiPZ is introduced. The

expression for u2 (z,p) (ea. 4.35) shows that h(z,p)-1 is

analytic in the upper half plane and Im(p) > 0 and + 0 as

{pj + m. We thus obtain (c + 0+)
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h=~- I (4.37) )-
-~pg-p-ic

or usina (ea. 4.36)

h1~)l t(n' )u I(z,p )e'ir z-

TWI dP'-I-------~j~----

a 0 r(p')u 2 (z,p')e i'Z 
(4.38)

T- f -W P'+p+iCdp

The first inteqral in (ea. 4.38) is zero since

t(P)U 1 (z,p)e- in-> - - 2 e + H.O.T. (4.39)
(2ip)

thus

a r(D')u 2(z'P')e'- ip Z p(4 3 a

h(Z,) - = - dpz z . (4.48a)

u2(zp f i)Z K(z,z')e" dz' (.0
-- m

in which the kernel of the inteciral does not depend on n;

i.e.,
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K~~z ~*) f r(p)u 2 (z,p)e-'Pydp (.1

Insertini (eq. 4.40) into (eq. 4.41) results in the Gelfand-

Levitan tvne equation

z
K(z,y) + R(z+y) + f R(z'+y)K(z,z')dz' = 0 (4.42)

__M y< z

where R(z) is the Fourier transform of r(p)

R(z) = r f r(p)e -iDdp . (4.43)

When (eq. 4.41) is substituted into the Schii~dinqer

equation, it is found that K(z,y) satisfies a partial differ-

ential equation

a- V(z)K = 0 (4.44)

subject to the boundary conditions

K(z, =~ 0 (4.45)

= K
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The solution of R(z) in eq. 4.43 consists, in qeneral,

of both a continuous and a discrete part. The discrete part

applies in the presence of trapped modes. In that case,

additional information is required to construct R(z)

=00 - -iniz

R(z) 2 f r(p)e iPz dp + rm.e (4.47)

where the Pi's are the poles of r(p) on the Positive

imaninary axis.

The choice of the constant normalization coefficients m i

is dictated by the requirement that V(z) = 0 for z < 0. This

can be seen by examininq the Gelfand-Levitan equation (4.42),

z
K(z,y) + R(z + y) + f R(z' + y) K(z,z')dz' = 0. (4.48)

Y z

We note that R(z) = 0 for z < 0 insures that K(z,y), and
dX

hence that V(W = 2 c7 (z,z) are all zero for z < 0. The

choice of mi in (eq. 4.47) is therefore dictated by the

reauirement R(z) = 0 for z < 0. Now, the inteqral in (eu.

4.47) is for z < 0,

__ _1
2- f r(p)e-lPzdp = i b.e (4.49)

where the bi's are the residues at the Poles Pi of r(p).

Suhstitutina for the value of the intearal in (ea. 4.47), and

imposin) r(z) = 0 for z < 0 yields m i = -ib i .
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In principle, in order to solve for R(z), an additional

measurement would be required to obtain the residues bi.

However, the next section demonstrates that, in the presence

cf slow velocity layers in the sediment, the frequency can be

selected low enouqh to eliminate the trapped modes (or bound

states of the Schr~dinaer equation), and thus the continuous

part of the solution for R(z) will suffice.

4.4 Bound States

The potential diagram (Fig. 3) indicates that bound

states may occur due to the presence of a low velocity zone

near the water sediment interface. Bound states are square

integrable solutions of Schrbdinger's equation and, as will

be shown later, Present considerable difficulty in the

inversion procedure. The number of bound states M was

obtained by Barqmann
(5 9 )

M 4 f zlV_(z)Idz M + 1 (4.50)
0

where V_(z) is the neqative portion of the potential for

z > 0. It is clear that the number of bound states is

determined by the width of the low velocity zone (prescribed

by the geology) and by the depth of the potential well which

is a function of the frequency at which the experiment is

conducted.
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To eliminate bound states, we impose the condition:

f zlV_(z)fdz < 1 (4.51)
0

Now,

f zlv_(z)ldz < _I t2 1V_(z)ja (4.52)
0

where X is the width of the well and IV(Z)Imax its maximum

depth:

IV_(Z)Imax=l0T ( C0i) I (4.53)

The condition expressed by eq. (4.12) is satisfied when

2
(w) C7 I <  (4.54)

0 cmin

In particular, for Lw < V7 , there will be no trapped
Cmin

modes. This simplified condition is a refinement of

Stickler's result that (! - ) should he sufficiently small
c0

(4.50). We have found that either of the two simplified

conditions is too restrictive in practice and one should use

our full equation (4.54). Hamilton has studied the charac-

teristics of surface sound channels in marine sediments (6 0 ) .

The velocity ratio R = (cmin/CO) ranqes from 0.984 for

pelaqic clay to 0.99 for terrioeneous sediments, while the

heiaht of the channel depends on the velocity gradient a
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£ = c(-R)/a .(4.55)

Therefore, for R - 1, the condition of zero bound states (eq.

4.54) can be written

- 3/2< a(1 - R) - . (4.56)

A marked improvement in the bound obtains if a linear

velocity nrofile

c(z) = az + Cmi n  (4.57)

with

c(I) = 0

is assumed in the condition of zero bound states (eq. 4.51).

The corresnondinq potential is then

c2
V(z) =-k 2  1 - for 0 < z < x (4.58)

0 (az + Cmin

Substitutinq this V(z) into eq. 4.51 and inteqratinq by parts

yields
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2 (I-R) + (1-R) + In R] < 1 (4.59)
a

For R - I,

- in R (1-R) + I (1-R) 2  + 1 (1-R) 3  (4.60)

Therefore,

w < a/V (1-R) - 3 / 2  (4.61)

Table I presents the upper bound on the probing

frequency with the condition of zero bound states for repre-

sentative values of a and R in the abyssal plain

environment (6 0 ). The current frequency of operation (2 ),

220 Hz, is low enough to eliminate the bound states in clayey

silt and silty clay. It is assumed that for operations in

clay sediments, an acoustic source will be available at about

half the current frequency which would be sufficient to do

away with the possible bound states.

The velocity gradient (a) can assume values over a wider

range han shown in Table I. For instance, Frisk et
al., 4 ; have inferred from experimental data that (a)
ranged for 0.5s - to 2.9s -1 at three locations in the
Icelandic Basin.
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Table I: Upper bound on the probing frequency for

the condition of zero bound states as a

function of velocity ratio, R, and

velocity aradient, a.

R

ClaVey Silt Silty Clay Clay

a 0.999 0.99 0.984

a

is- I  8.7 kHz 275 Hz 136 Hz

1.2s - I  10.4 kHz 330 Hz 162 Hz

1.3s -1  11.3 kHz 358 kHz 176 Hz
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ChAPTER V

NUMERICAL SOLUTION OF THE GELFAND-LEVITAN EQUATION

5.1 Introduction

The Gelfand-Levitan Equation

(z
R(z+y) + K(z,y) + j K(z,z') R(y+z') dz' = 0

(5.1)

is a Fredholm equation of the second kind in the variable y

with z regarded as a parameter. The object of this chapter is

to present three methods of computing K(z,z) and hence to

reconstruct the potential V(z).

5.2 Series Expansion

A parameter A is introduced in the Gelfand-Levitan

equation

R(z+y) + K(z,y) + A K(z,z') R(y+z')dz' (5.2)
-y

and a solution is sought by a method of successive approxima-

tions. The solution is written as a power series in X

K(z,y) = Ko0(z,y) + AK1 (Z,y) + X K2 (z,y) +

(5.3)
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Integrating term by term and equating coefficients of equal

power of X one gets

K (z,y) = -R(z+y) (5.4)

0z

K1 (z,y) = - R(y+z') K0 (z,z')dz' (5.5)

-y

and in general

K n(z,y) = - R(y+z') Kn-1z,z')dz' (5.6)

-y

The theory of Volterra integral equations of the second

kind demonstrates that the series is convergent for all X

when the norm of R,

(Z 2
IRII j R (z+y)dy (5.7)

-Z

exists61but, Parseval's identity indicates that iJRii is

always finite since

I IRII 'r R2 (y)dy - i_ Jlb(p) 12dp (5.8)

2 200O -00O

Hence, b(p), given lb(p)t il and b(p)-* (/p2), is square

integrable.
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The Kn (z,y) are bounded by

(n1

< IRH2 . ,ABn1(5)
IK n( Z y) [ < 11 RI J(n-i ) ! (5 9

where A z R 2 (y+z')dz' and B = I? JzdydyIR 2 (y+y")

-y -y -Y

5.2.1 The Potential

The expansion of K(z,y) yields a. corresponding expansion

for the potential V(z) = 2 dK(z,z)

dz

V(Z) -V (0) + v (1) + V (2) + * (5.10)

where,

(0) dK d
V =2 0 (z,z) =-2 j.z-(2z) (5.11)dz d

V 1 2 dK--(z,z) =4R 2 2z) (5.12)

The computation of V (2 ) is more involved and is presented

here for reference purposes

K 2 (z,y) = Jz J R(y+z') R(z'+z") R(z+z")dz"dz'

-y -z I
(5.13)

-88 -



which can be written

K 2 (zy) = J dz' cD(z,z') (5.14)

-ZI

where

O~zz')= R(z+z') R(z'+z") R(z+z") dz" (5.15)

-ZI

Therefore,

- (z,z) = cO(Z,z) + O(Z,- z'

dz _-z z (z)

(5.16)

But,

Oiz,-z) =0* (5.17)

and

O(z,z) =R(2z) J 2 R 2 (z')dzl (5.18)

0

z

(zz)= R(2z) R(Z+z') + R(z+zl) J -(R(z+z"D)R(zt+zII)dz"

-zI

(5.19)
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Finally,

~2z R2,
V(2) W = 4R(2z) R (z')dz' +

0

+ 2 f) R(z+z') R(z'+Z") DR(z+z')dz"dz

-z -z' (5.20)

V(2) (z) displays the global character of the higher order

terms (which become increasingly unwieldy).

To summarize, the following approximation will be used

R 2
V(z) = -2dR(2z) + 4R (2z) (5.21)

dz

5.2.2 Connection with Other Formulations

To first order,

2dR "

V(z) =-2LR(2z) (5.22)

which can be written in terms of the reflection coefficient

b(p)

2i -i2pz
V W pb(p)e dp. (5.23)

Recall the expression for the reflection coefficient
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b(p) = J- ePzV(zf) O(z')dz' (5.24)

_ 0

The Born approximation O(z') e ip z results in

I f 02ipz'
b(p) -- V(z') dz' (5.25)

Taking a Fourier transform of both sides leads to

V(Z) L 0 pb(p)c -2iPzdp (5.26)

That is the result obtained by Cohen and Bleistein (45).

The first order approximation to V(z) in the Gelfand-Levitan

formulation is therefore the Born approximation.

Stickler's inverse procedure entails the solution

of the coupled equations

"-Ulf q(z)u2 = p2u2
2i 12

q(z) 0- pb(p) u 2 (z,p)dp  (5.27)

The auxiliary potential q(z) is identical to V(z) and

u2 (zp) is the solution that satisfies u2 (z,p) 
= e - i p z

To first order assume u2 (z,p) = e-izp and obtain once again,
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(z) pb (p) e 2 Pzdp (5.28)
-O

5.2.3 Algorithm

The first step is, uf course, the computation of the

Fourier transform of the data,

R(z) = - b(p)e 'P'dp, (5.29)

followed by a straightforward computation of

dR 2
V(z) =-2 (2z) + 4R (2z) (5.30)

Observe that determining the potential at depth z requires

data at depth 2z. The truncation of the series leads to

a deterioration of the estimate of V(z) with depth. In

particular, since b(p) is integrable, R(z) tends to zero

as z-*  (Riemann-Lebesgue theorem) and it follows that

V(z) -0 at depth even when the potential V(z) tends to a non-

zero final potential Vf.
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5.3 Uniqueness of the Solution

Suppose there were two solutions of the Gelfand-Levitan

equation, K(z,y) and K'(z,y)

Iz
K(z,y) + R(z+y) + K(z,z') R(y +z') dz' 0

-y

(z
K'(z,y) + R(z+y) + K'l(z,z') R(y+z') dz' = 0

-Y (5.31)

Then K(z,y) = K(z,y) - K' (z,y) satisfieb a homogeneous

Volterra equation of the second kind

^ Iz  ^

K(z,y) =f K(z,z') R(y+z') dz' (5.32)

-y

Since R(z) is square integrable(cf. Ch.III), it follows (61)

that this equation has only the trivial solution K(z,y) = 0

and therefore the solution of the Gelfand-Levitan equation

is unique.

5.4 Finite Difference Methods

The natural way to solve the Gelfand-Levitan

equation is to discretize it by converting the integral into

a sum

n
K(n,m) + R(n+m) + h E wK(n,i) R(m+i) = 0

i=-m
(5.33)
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where wi are the weights in an appropriate quadrature

formula. For the trapezoidal rule, wi is at the end points

and 1 in between

n
K(n,m) + R(n+m) 4- h E. K(n.i) R(i+m)

i=-m

- h(R(O)K + R(n+m) K(n,n)) = 0 (5.34)

and since R(O) = 0

nh
K(n,m) + h E K(n,i) R(i+m) + R(n+m)[I- l (n,n)]=

i=l-m

(5.35)

To solve for K(n,n), one has to solve the Ware and Aki (21

type matrix equation,

(I + hR)K = (5.36)

(I + hR) can be inverted by Gauss elimination. A more

efficient algorithm has been presented by Berryman and

Greene ( 26) who put the equation in the form:
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R hk(n, -n+l) 0

RIR2

I + h
hk (n,n-l) 0

RIR2 . . .R 2 n l+hk(n,n) 1

(5.37)

where k(nm) K(n,m) (5.38)
h1--K (n, n)

To obtain the potential at depth n - ,

2
q = j[K(n,n) - K(n-1, n-1)] (5.39)

one needs to invert a (2n-2) x (2n-2) matrix for K(n-l,n-1)

followed by the inversion of a (2n) x (2n) matrix for

K(n,n). In fact, since the object is to reconstruct the

potential down to depth nh, a succession of matrices of

increasing size have to be inverted. The Berryman and Greene

algorithm is similar to the Levinson algorithm for the

inversion of Toeplitz matrices (22 ). The method proceeds

by recursion; given the solution of the (2n-l) x (2n-l)

system, the solution of the (2n) x (2n) system is generated

by using the recursion formulae:
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f i 2n) r nf i(2n-1)

gi(2) rn 1 i(2-1)(5.40)

The vectors f(2n-1) and g(2n-1) are defined by

R 1f 2n 1 (2n-1) f 2n1(2n-1)

h -

f 1 (2n-1) g1(2n-1)

- -R2n-1 f 0 (2n-1) ,_0 (2n-1)

(5.41)

and

R 1 92-I (2-1) f2n-1 (n1

h (2n-1)

R1- 2n-1- Lgo(2n-1) f 0 (2n-)-Q 2n-1

(5.42)

where Q 2n = Q2n-1 (1-r n)

2n- 1
and r 2n = h E f.i(2n-1) R2~-/~-

i=0

The recursion starts with f 0 (0) 1 land g0 (0) =AR,

The solution is then,
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=2 1 - Q2n-l~l + r2n)
K(n,n) 2 Q n1( n (5.43)

h 1 + Q2n-1(1 + r2n)

Berryman and Greene have suggested smoothing R(z) to obtain

R(n) (26).

R(n) = n R(z)dz (5.44)

n-i

which would allow for delta functions in R(z).

5.5 Coupled Equations Method

A method to bypass the matrix inversion has been

suggested by Kritikos, Jaggard and Ge who were interested

in determining the dielectric permittivity of a slab from

reflection measurements at normal incidence. The algorithm

was tested numerically on reflection coefficients that

could be represented by two and three pole Butterworth

filters. The scheme uses in conjunction with the Gelfand-

Levitan equation, the hyperbolic partial differential

equation satisfied by K(z,y) (cf. Eq. (4.44)).

a 2 K (zy) - (zy) - 2K(z,y) dK(z,z) = 0
- (2 y) 2 'dz

(5.45)
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For simplicity, a change or coordinates is introduced

[1=~B ] [:1(5.46)
and the equations are discretized:

m-i
Gelfand-Levitan: Km,n + 2h K i+nl,mi+1 R2i-1

m~~n i=2 inlmil2-

+ (1 + hK m+nl,l)R2m-1 = 0

(5.47)

PDE: K m+l,n+l = Km,n+1 + Km+ln + 2h[(Km+l, 1 - Km,1)-l]Km,n

(5.48)

The potential is obtained through

2

V m = (K - K (5.49)

The point of the method is that Km, can be computed

directly from the Gelfand-Levitan equation without a

matrix inversion since the terms within the sum can be

generated via the PDE.

5.5.1 Analysis of Stability

Although it has not been possible to study the

stability of the coupled system of equations, a simplified
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analysis of the PDE may be of interest.

Let Km = Wmeikn  be a Fourier component and

assume that

2h(K m+l, I -K m)= h2Vm (5.50)

is known. The PDE becomes

Wm +1 eik = wme ik + Wm + l + (h2 Vm-l) (5.51)

The amplification factor is therefore

~2V

I---I i+ h 1 (5.52)
Wm e ik_

which is larger than 1 for arbitrarily small step size h or

potential Vm as k - 0.

5.6 Error Estimates

5.6.1 Discretization Errors

The discretization of the Gelfand Levitan equation

is accompanied by an error c

n
K(n,m) + R(n+m) + h E w.K(n,i) R(m+i) + £ = 0

i=-m n,m

(5.53)
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2 z
For the trapezoidal rule, C=-! (KR)

The equation that is actually solved is

A fl A

K(n,m) + R(n+m) + h E w. K(n, i) R (m+i) =0

i=-M 1

(5.54)

Or, in matrix notation (see equation 5.37 )

(I + hR)K = b (5.55)

rather than

(I1+ hR)K = b -(5.56)

It follows that

(I + hR) (K - K) =(5.57)

For a nonsingular matrix (I + hR),

KA (I +hR) E:(5.58)

Taking norms,

1 -1
HK - Ku (I + hR) III~I(5.59)
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Assuming that IIhRI I < 1, where the norm is such that

II ilt = i,

-1 1

II(I + hR)-lll 1 - (5.60)

Therefore,

AC

IIK -KII < l1hE R7(.1_ [RI"I (5.61)

2n
Using the norm, Ilells = max Ijij and IIRII, = Z IR(i)l

i=l
(which also equals H[RIIL, the absolute column sum of column

(2n)).

IIK - II < maxIEl-- ma 2n (5.62)

1 - h Z IR(i)l
i=l

Since lij is O(h 2 ) for the trapezoidal rule, the approximate

solution K converges to the exact solution K as h -) 0. Note

that the denominator in (equation 5.62) decreases with

increasing depth, hence raising the bound on IIK - KII.

5.6.2 Data Errors

Errors in the plane wave reflection coefficient

r(kz) and in its Fourier transform R(z), mean that one is

solving for K(n,m) in the Gelfand-Levitan equation:
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-' -'fl An

K(n,m) + R(n+m) + h E w. K(n,i) R(m+i) =0

i=-m 1

(5.63)

Or in matrix notation,

(I + hR)K = b (5.64)

which can be written,

(I + hR + hMR) (K + 65K) = (b + 6b) (5.65)

where R = R + 6R, and K =K + 6K.

It follows that

6K = (I + (I + hR)- h6R)- (I + hR)- (6b - Kh6R)

(5.66)

Hence,

116KII1 < 11(1 + hr)-1 11.11(1 + (I + hR) 1' h6R)'jj1

-(I 16bl I +hII6Rl I. II KI 1)

(5.67)

or,

116KI11 <~ (II 1R1 (116bi1 + hIIKII.116RI1)

(5.68)
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As the errors in R(z) increase, the bound on 116KII

also increases. Moreover, it is clear that as depth
2n

increases 1 R1 I E jR(i)l also increases raising the
i=l

bound on the relative error 116KII/ilIKII.

5.6.3 Errors in the Potential

The discrete version of the potential yields:

j6V(n)l < (16K(n,n) l + 16K(n-l, n-i)I) (5.69)

In the absence of data error 6R, 16V(n) - 0 as the

sampling interval h 0 since the quadrature error c is

O(h 2 ) (see equation 5-62).
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CHAPTER VI

NUMERICAL RESULTS

The derivation of the plane-wave reflection coefficient

from pressure measurements for the setup of the Frisk experi-

ment was the subject of Mook's thesis (6 4 ) . Unfortunatelv,

the attempt by Mook to apply his technique to one set of

experimental data yielded reflection coefficients higher than

one; such a result is not consistent with physical require-

ments (JR1 1). It is not yet clear whether Mook's problem

lay with improper modeling of the experimental setup, with

the imprecision of the data, or with the numerical techniques

used to extract the reflection coefficient from the data. It

should be noted, however, that the experimental data have

yielded, via trial and error methods, excellent models for

the acoustic parameters of the seabed ( 4 ) . This was done by

assuming a seabed model, comouting the pressure field and

matching it up to the observations.

The starting point in our analysis is a layered model of

the acoustic profile to be recovered. From this exactly

known model, a plane-wave reflection coefficient is

generated. The reflection coefficient is what would have

been computed from Mook's method, or subsequent improvements

to it, for the Frisk experiment on this particular layered

seabed. The reflection coefficient is then Fourier trans-
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formed via an FFT to provide the input to the Gelfand-Levitan

integral equation in accordance with the theory developed in

Chapter IV. The particular casc. of two half-spaces in

contact (step discontinuity) yields a reflection coefficient

which can be Fourier transformed analytically. Closed-form

solutions for the Born and Improved Born approximations to

the inverse solution are also obtained for that case.

More generally, the Gelfand-Levitan equation is solved

numerically to yield the potential and velocity profiles.

We have concentrated our efforts on the study of the

Gelfand-Levitan inverse method using synthetic data for which

the correct answer is known. The comparison of the recon-

structed orofile with the known original profile allows us to

assess the impacts of limited aperture, frequency, profile,

noise, density and path loss on the accuracy of the numerical

schemes described in Chapter V.

6.1 Generation of the Reflection Coefficient

The first step in the evaluation of our approach is the

generation of the reflection coefficient. With the exception

of the simplest cases, the plane-wave reflection coefficient

must be generated numerically. The method used is based on

the Thomson-Haskell propagator matrix approach used by

Mook (6 4 ) , with one modification. The plane-wave reflection

coefficient is obtained as a function of the vertical wave-
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number (R(kz)) rather than as a function of the horizontal

wavenumber (R(kx)). There are two essential elements of the

propagator matrix approach: (a) dividing the acoustic

profile into homogeneous layers, and (b) selecting variables

that are continuous across interfaces. The latter is accom-

plished by choosing the pressure P(-) and vertical component

of velocity U(z). Within an isovelocity layer, the field can

be decomposed into up and down going waves,

ik z -ik z
P(z) = P+ e z + P_ e z (6.1)

where kz denotes the vertical wavenumber within the homogene-

ous layer. Unlike P(z), P+ and P_ are discontinuous at an

interface. The normal component of velocity U(z) is related

to P(z) through one of the time-harmonic "telegraph"

equations:

P= iwpU (6.2)

az

which yields,

ikz z -ikzz

U(z) = Yn[P+ e - P_ e ] (6.3)

Where Y n = kz /WPn is the admittance of the homogeneous
nlayer n. In matrix form, equations (6.2) and (6.3) become:
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P(z ) eikzz e- ikzz  P 1

= I(6.4)
ik z -ik z

U(Z ) Y e z -Yne z L
n n

When P(z) and U(z) are known at point z1 of the layer,

one can deduce the up and down going components P+ and P_ by

inverting the matrix in (6.4)

P+ eikzzI e- ikzz

(6.5)
Sik z I e-ik zP e -Yne Uzi)

(Within a homogeneous layer P+ and P_ are, of course,

constants.) One can then determine P(z) and U(z) at another

point, say z2 , within the layer by substituting (6.5) into

the right-hand side of (6.4):

Pz 1 ) coskz(zl - z2) Y- sink(zl - z2) P(z2)
n

) sinkz(zi - Z2 ) k( z2) 2)

(6.6)
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or, introducing the propagator matrix $

P(zl )  P(z2)
= (z2z- zl) (6.7)

U~zl )  U~z 2)

One can now proceed from one layer to another by integration,

P(ZO) P(z n )

= I 1•(6.8)
U(Zo) UZn

Where the oi's depend on the parameters of the material

making up the respective layers. Mook (64 ) has found that the

computations can be improved by modifying (6.8) to

P(Zo) nb P( n)

= a (6.9)Yo0U(Zo)j i~l Ci b i Ci ai Y nU(Z n)

in which

F0b1 012 (6.9a)

i i bi Ci ai 21 022
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and where

yn-l
- is a normalized admittance

n

a. = cos k h.

1b. = -1 sin k z h.

.t

h. = thickness of i th layer

k k2 -(k2- k2)
kzi ,kn 0k kz 0

This has the effect of giving the two components P(z) and

YU(z) similar scales of magnitude.

Now, the reflection coefficient R(kz) at the top inter-

face is defined as

R(kz) - _0 (6.10)

Therefore by introducing (6.5) into (6.9) one obtains

= 1 
6.1-

LP_O i -1 21 22 ~n UIZn)
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To compute the ratio in (6.10), a relation (boundary condi-

tion) is needed between P(zn) and U(zn). That relation is

obtained by noticing that in the (n + 1 )st layer, one has

only down going waves. Therefore,

U 1 P(Zn+l )  (6.12)
n+l - n+l

and, since Pn+l = P(Zn), one has

= ~~ Pnl 6.3

P+O[011 + 021 f12 + 2211 P( .3
P- 0 l1 - f21 f12 - f22 [n+l n+l

which yields the reflection coefficient

P- 0 _)I- 1 21 + CN+I(12 - f22)R(kz) -P+0 I+ 021 N+I 2+ f22) (6.14)

Mook (6 4 ) has also found it advantageous to scale the

layer propagation matrices so that the largest element value

in a given layer matrix is 1.

The values of admittance for three terminations are

readily identified: hard bottom (Yn+l = 0), soft bottom
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(Yn+l= ), and isovelocity termination (Yn+l = Yn) "

Although of theoretical interest, and of possible applicabil-

ity to other situations, the soft bottom case has no appli-

cation in the ocean bottom problem discussed here.

The division of the acoustic profile into homogeneous

layers is done in a way akin to quadrature formulae in

numerical integration using thinner, closely-spaced, layers

in regions of rapid change in the acoustic parameters and

thicker, wider-spaced layers in regions of slow change. We

have found that the common rule of thumb, ten layers per

wavelength, although satisfactory in general, is probably too

conservative. We have found that for complicated profiles,

where the reflection coefficient was required for a large

number of values of kz , the computation of the plane-wave

reflection coefficient constituted the most time-consuming

step in modeling the whole inversion procedure. Clearly,

this step, is inherent only in our analytical evaluation of

the inversion problem; when reflection coefficients are being

processed from measurements, this step will be eliminated.

In order to test our inverse procedure, we selected a

few representative profiles which are defined as follows:
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(a) Half-Space

The half-space profile is defined by a velocity profile

c(z),

c(z) = co  , z < 0

= C1 z > 0

The reflection coefficient for this profile and its

Fourier transform were obtained analytically in Section

(6.2).

(b) Window Profile

Although of no direct application in ocean bottom

acoustics, the window profile defined by

c(z) = co , z < 0

= Cl , 0 4 z c L

=c o , z > L

is a standard example used to test inverse procedures. The

window profile is of particular interest in electromagnetics

(dielectric slabs).
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(c) Stickler Profile

Stickler (7 ) chose a twice continuous function to test

the Deift-Trubowitz inverse method,

c(z) = co  , z < 0
2 3

= c o + (cl-co)(3(-) -2() ), 0 4 z 4 L
L)~=C1  L < z

This profile does not support a trapped mode at any

frequency.

Stickler generated the associated reflection coefficient

via the Riccati equation, while we used the Thomas-Haskell

procedure outlined earlier in this section. An example of

the Stickler profile is shown in Fig. 10.

(d) Frisk Profile

This velocity profile is based on the results obtained

by Frisk in his deep ocean bottom experiments
(4 )

c(z) = c O  , z < 0

= co - (cO-cl)z , 0 4 z z 1

c I + yz , 4 z . L

= c2 ,z > L
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Typical parameters used are: co = 1540 m/s, cl =

1515 rn/s, c2 = 1655 m/s, y = .97, and L = 145 m (see

Fiq. 11).

In spite of the low velocity zone near the ocean-bottom

interface, this profile does not support trapped modes at the

frequency used for the examples (25 Hz).

Examples of reflection coefficients are shown in the

amplitude and phase diagrams of Fig. 18. Note that as we

have shown in Chapter III for the uniform density case, the

amplitude goes asymptotically to zero as the vertical wave-

number goes to infinity.

6.2 Case of a Step Discontinuity in Potential

We have been able to obtain analytically the Fourier

transform of the reflection coefficient in the case of a step

discontinuity in potential, that is, in the case where the

ocean bottom is a homogeneous half-space. (V(z) = V0 for

z > 0).

The reflection coefficient at a step discontinuity in

potential is
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kz-/Vo +k 2

r(kz) - Z
k+ /-Vo+ kz

(6.15)

[k- /-V0 + k2]2

V0

The Fourier transform of r(kz) is

1 7-ikzz
R(z) = -f r(kz)e dkz

(6.16)

i i7 (S - VVo+ s 2 2mi. -Ve ds

which in this form can be identified as a known inverse

Laplace transform (6 5 ) ,

(Z 2 j(/z) (6.17)

Thus, in this particular case, one can proceed to the

Gelfand-Levitan procedure with an input which is as accurate

as the computation of the Bessel function, and therefore,

this approach removes any inaccuracies which may be
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introduced either in the computation of the reflection

coefficient or in that of its Fourier transform.

Figs. 12a,b,c represent the reflection coefficient of

eq. 6.15 and its Fourier transform for a half-space

(eq. 6.17).

As a matter of fact, we have illustrated in Figs. 13 and

14b reconstructions of the step discontinuity using the exact

analytical expression (eq. 6.17) for the Fourier transform of

the reflection coefficient and the numerically devised

transform in accordance with the method discussed in Section

6.1. It can be seen that our reflection coefficient method

yields results as accurate as the Bessel function expression.

6.2.1 Approximate Solution of the Gelfand-Levitan Equation

for a Step Discontinuity

Continuing with the case of a homogenous half-space, or

step discontinuity, the "Improved Born" approximation

presented in Chapter V can be now readily obtained in terms

of Bessel functions
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dR
V(z) = - 2 (- (2z) + 4R2 (2z)

(6.18)

= 4VO Jl1 (2V-oz) J "6 2,z ) - 4 j2 2'7Voz)

z z

Born Correction Term

Improved Born .

From the asymptotic behavior of the Bessel functions, we know

that,

ilc)+Cos 3w4!

and (6.19)

J2(C) + cos( -5w

Hence, we can deduce the asymptotic behavior of the recon-

structed potential,

V(z) + 0 as(z - 3/ 2) (6.20)
Z +

which recalls the limitation of the Improved Born approxi-

mation, already mentioned in Chapter V, that V(z) + 0, even
Z +

in the case of a finite terminal potential.
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On the other hand, the asymptotic behavior of the Bessel

functions near the origin is

+ 1
+ 0

(6.21)

1 2
J2(c ) +C 0

and therefore, substituting in (6.18) the reconstructed

potential V(,) tends to the exact potential near the origin,

V(z) + V0  (6.22)
z + 0

At the origin, the "Improved Born" correction term is zero,

but its contribution to the accuracy of the results becomes

progressively more important as z increases.

We illustrate the Improved Born approximation in

Fig. 12d along with the Standard Born approximation and the

Correction Term. The substantial improvement due to the

Correction Term in (6.18) over the standard Born approxi-

mation is clearly visible in the half-space case. Moreover,

our Improved Born approximation results in a more accurate

reconstruction of the acoustic velocity profile to further

depth. The other features of the approximation are also

visible, i.e., excellent reconstruction near the origin and
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deterioration of the reconstructed velocity with depth (the

potential V + 0 as z + - means that c(z) + c o , the

water acoustic velocity as z + -). The Improved Born is

also illustrated in the case of a Stickler profile in Figs.

28 and 29.

6.3 Fourier Transform of the Reflection Coefficient

The Gelfand-Levitan algorithm requires as an input the

Fourier transform, R(z), of the reflection coefficient r(kz),

1 -ik z
R(z) = f r(k)e dk z  (6.23)

which requires a knowledge of r(kz) over the whole line

- < kz < o. But the symmetry property demonstrated in

Chapter III (eq. 3.6),

r(-k Z) = r*(kZ) (6.24)

reduces the requirement to a knowlege of r(k z ) over the half-

line 0 < kz < . It follows that

1 00 -ikz
R(z) f r(kz)e dk z + complex conjugate (6.25)

0

is real, and therefore all the quantities involved in the

Gelfand-Levitan algorithm are also real.
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Theoretically, r(kz ) can be calculated for a given

acoustic model over the range 0 < kz < c. In practice,

samples of r(kz) are given over a finite range a < kz < b,

and presumably this ranqe is restricted to real angles

0 < kz < k0 , where kz = 0 corresponds to grazing incidence

and kz = k0 (the water wavenumber) corresponds to vertical

incidence. It is useful to study the behavior of the Fourier

transform under different restrictions imposed upon the

knowledge of the reflection coefficient such as limited

angular aperture and different sampling densities.

6.3.1 Fast Fourier Transform

The computation of the FFT for reflection coefficients

r(kz ) computed over 0 < kz < a, including the case where

a > k0 (corresponding to complex angles of incidence), does

not present difficulties. The adopted algorithm uses time

decomposition with input bit reversal( 6 6 ). In fact, for the

acoustic profiles tested, a = 2 or 3 k0 was sufficient as the

asymptotic decay of the reflection coefficient with

increasing kz was even more rapid than the (i/kz 2 ) derived in

Chapter III. The errors in the imaginary part of the FFT,

which are of the order of 10-8 (single precision), are

negligible, and therefore the real part of the FFT and its

amplitude are interchangeable on the plotted results.
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6.3.2 Limited Angular Aperture

Since it is not practical to have the sampling process

cover the entire non-zero portion of r(kz), it is useful to

study the effect of limited angular aperture, i.e., r(k z )

given over the finite range a < k z < b, on R(z), the Fourier

transform of r(kz). The Fourier transform is affected by the

nature of r(k z ) and by the degree of truncation.

For N sampling points spaced Ak z apart, the total

sampling interval T covered is N.Akz. This corresponds to an
N~ k

angular aperture of a = sin - I ( N z), when kz = 0 is within

the known aperture (i.e., 900 > e > cos-l(NAkz/ko)). Note

that for T > k0 , cos(T/k0 )>l, and the aperture includes all

real angles plus complex angles. Now, the Fourier transform

of r(kz) can be written

1 T -ik z -ik z
R(z) z .) dk + r(k.)e dk

(6.26)

= R1 (z) + R2 (z)

Rl(z) is the part of R(z) that is approximated by the

discrete Fourier transform (N samples).

R 2 (z) represents the error incurred due to the limited

angular aperture. The energy lost in the process,
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F f 1R2 (z)I 2 dz (6.27)
T

can be computed on synthetic examples. Due to the precipi-

tous droD in r(k z ) beyond k c , the wavenumber corresponding to

the critical angle ec= sin- I (-0, and due to the asymptotic
cf

behavior of r(k z ) for large kz , it is readily shown on

computer simulations that a knowledge of r(k z ) over real

angles is adequate for most cases. In fact, there is little

change in the reconstructed profile as more angles are

included beyond the real ones. On the other hand, as the

angular aperture is restricted, the profile reconstruction,

via the Gelfand-Levitan method, produces a smoothed out

version of the original profile. This low-pass filtering

phenomenon is best understood by interpreting the effect of a

finite aperture as a low-pass filtering of the original

velocity profile. This may be seen from the Born approxi-

mation eq. (5.26),

2i -2ikz

V(z) - k r(k z ) e dk

where V(z) and kzr(kz) form a Fourier transform pair;

windowing r(k z ) signifies low-pass filtering V(z) and

therefore yields a smoothed out velocity profile. The

Gelfand-Levitan reconstruction can then be interpreted as an

unfiltered, faithful reconstruction of the smoothed out

original. Severe degradation of the reconstruction is
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observed when the angle of incidence is restricted to

900 > e > Oc (angular aoerture a < (90°-Gc)). This is easily

understood, as the critical angle region contributes

substantially to the reflection coefficient. A cursory

examination of reflection profiles will demonstrate this

point.

A series of figures displays the progressive deteriora-

tion in profile reconstruction as the angular range is

restricted. The evolution from Fig. 19 (kzmax = .512, com-

plex angle of incidence) to Fig. 20 (kzmax = 0.128), and Fig.

21 (kzmax = 0.064, e = 51.130) where kzmax > kzcritical

0.0373 ( c = 68.50) shows that only small changes take place

and that these changes are confined for the most part to the

velocity drop region near the ocean bottom interface.

However, as the angles are further restricted to beyond the

critical angle (kzmax < kzcritical) major changes do occur as

seen in Fig. 22 (kzmax = .032, a = 710) and Fig. 23 (kzmax =

0.016, o = 80.90). The examination of the impact of limited

angular aperture in this case leads us to expect, in

practice, a good reconstruction of acoustic velocity profiles

from reflection data restricted to real angles (0 < G < 90°).
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6.3.3 Sampling

The sampling rate to be chosen is governed by three

competing considerations:

(a) Adequate sampling in the kz-domain to avoid aliasing in

the Fourier transform of r(kz).

(b) Adequate sampling in the z-domain to obtain a stable and

accurate Gelfand-Levitan numerical reconstruction.

(c) Adequate sampling in the z-domain to obtain the

necessary resolution in the reconstructed profile.

Each of these points is discussed next.

(a) Aliasing

Since the Fourier transform of the reflection coeffi-

cient, as is the rule with spectra of transients, tends to be

smooth and approaches zero asymptotically as kz increases to

infinity, the sampling interval Ak. is chosen so that

essentially all, rather than all, the spectral content of the

waveform is contained below i/(2Akz). For a box-like

reflection coefficient of width 2 .kcritical where kcritical

corresponds to Ocrit, the bandwidth is proportional to

1/(2 kcritical) which indicates that an appropriate sampling

interval should be a fraction of kcritical- One should note
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however, that in the context of an actual experiment, the

choice of Akz is not as straightforward. The reflection

coefficient r(kz) is obtained from r(kr), the reflection

coefficient as a function of horizontal wavenumber kr ,

2 k2  2
kr +zk= k0  (6.28)

The sampling interval in kr is determined by the maximum

distance, D, between source and receiver during the

experiment

Ak - (6.29)r D

It is clear that a uniform sampling in kr does not lead

to a uniform sampling in k.,

dkdk z tan 0 , (6.30)

r

which also shows that the problem is particularly severe near

einc = n/2 (grazing). On the other hand r(kz ) near grazing

is well known, r(kz) = -1. A useful way to look at the

problem is to represent the dispersion relation in tne

(kr - kz) plane which clearly shows the increase in Akz as kr

goes from 0 to k0 .
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(b),(c) Sampling in the z-domain

The sampling interval in wavenumber space, Akz , is not

chosen through aliasing considerations alone. The other

consideration is the resulting resolution in the z-domain

imposed by the total sampling interval T,

2IT
AZ -

where T = N Akz

A decrease in Az can be effected either by a decrease in

the sampling interval in the wavenumber domain Akz or by an

increase in the number of points N. It is easier to resort to

the latter method as the reflection coefficient due to its

rapid decrease for large vertical wavenumbers can be

conveniently padded with zeros. Moreover, the size of Akz,

which can be varied in a synthetic experiment, is usually

fixed in an actual experiment.

An examination of the reconstructions of a half-space of

profile, Figs. 14-17, reveals that excellent reconstructions

can be achieved for appropriate choices of N and Az. A

window reconstruction is shown in Fig. 24. The main effect

of a decrease in Az is that adequate reconstruction of the

acoustic profile is possible to a greater depth. It is also

true that for given sampling intervals Akz and Az, an

increase in the height of the velocity jump at the seafloor
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results in a deterioration of the reconstruction with

depth. That is evident for a half-space by comparing Fig.

14b and Fig. 17 and for the Improved Born approximation by

analyzing eq. (6.18).

6.4 Frequency Scaling of the Reflection Coefficient

Although the experiment we are analyzing is mono-

chromatic, it is important, for a proper choice of operating

frequency, to study the behavior of the plane-wave reflection

coefficient with frequency. For the simplest acoustic

medium, a homogeneous half-space, the reflection coefficient

is independent of frequency. As soon as a spatial scale is

introduced in the acoustic medium, by inserting a layer for

instance, the reflection coefficient becomes frequency

dependent. This dependence, which can be expressed through

the continued fraction expression of eq. (3.25), is at the

heart of the Ware and Aki inverse method. In this section we

show that the solution of a high frequency problem is

equivalent to the solution of a scaled problem at a lower

frequency.

The one-dimensional Schredinger equation,

(dz + k2 )0(z) = V(z)4(z) (6.31)

dz

gives rise to the reflection coefficient

e ik z z  '

R(kz) = f 2ik V(z') (z')dz' (6.32)

12z
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At a different angular frequency w' = aw 0 , with

corresponding water wavenumber k' = ak 0 , the Schr'Odinger

equation becomes

d2 2kz2V

I!L + a kz )'(z) = (z)4' (z) (6.33)
dz

where V' represents the potential at the new frequency ,.

Now, the potential is frequency dependent,

V0 (z) = k2(l - n2) (6.34)

in which n, the index of refraction is a function of depth z.

Therefore,

V'(z) 2V 0 (z) (6.35)

yields the Schrodinger equation

dz + L 2'(z) 2V (z)'(z) (6.36)

dz

The change of variable z' = az restores the original

Schrodinger equation (6.31) albeit with a "stretched" version

of the original potential,

(d + k2  '(z') = V0(z'/a),'(z') (6.37)

dz'-
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The corresponding reflection coefficient is now

ik z'

RI(kz z f e-7-- V0 (z'/a),(z,)dz ,  (6.38)
-- z

The reflection coefficients at the experimental

frequencies w and w' are therefore identical for a given

wavenumber kz if

V0 (z) = V0(z'/M) . (6.39)

One can therefore conclude that a high frequency experi-

ment (W' > w) is equivalent to a low frequency experiment

with a stretched profile (a > 1). One can therefore compare

the reconstruction of a given profile at two frequencies, say

w and w' = aw, by comparing the reconstruction at a single

frequency w of the given profile with its stretched version

(stretch factor a). Now, it is a numerical fact, as seen in

previous examples, that profile reconstruction via the

Gelfand-Levitan algorithm deteriorates with depth. It is

therefore clear, at least for simple profiles, such as a step

(half-space) or a window (layer), that a lower experimental

frequency entails deeper reconstruction as shown in Fig. 30.

That holds for more complicated profiles, and we therefore

conclude from a frequency scaling point of view that the

lowering of the experimental frequency allows for deeper

profile reconstruction without noticeable effects on the

reconstruction of the detailed variations of the profile.
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6.5 Profile Reconstruction in the Presence of Density

Variations

Although the focus of this thesis has been on the

reconstruction of the acoustic profile in the presence of

velocity variations at a single frequency, it is useful here

to show how one can extend the method to the retrieval of the

velocity in the presence of density variations and also to

recover the density profile.

We have shown in Chapter II (eq. (2.5)) that in the

presence of smooth density variations, a change of variables

retained the governing Helmholtz and Schrtdinger equations

with an attending redefinition of the index of refraction to

account for variations in the density p,

n' = n2 + k0- 2 1 v 2  - i-p 2 (.0
nI=n -2 l V _3LVP)2) (6.40)

The density dependent potential to be reconstructed is now,

V' = k- (l - n '2 (6.41)

A single frequency experiment can only hope to reconstruct

n'(z). To recover n(z) (and therefore the velocity, c(z))

and p(z) one needs to carry out the experiment at two

frequencies wl and w2 with water wavenumbers k0 and kl,

respectively. The associated potentials are then
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V1() 2

v (Z) =k 1(1 - n' )

and (6.42)

V 2 (z) = k2(l - n'2

These potentials can be reconstructed by the application of

the Gelfand-Levitan algorithm to the corresponding reflection

coefficients. One can then obtain the difference of the

potentials,

V v V (k2 _ k2)(1 - n2 ) , (6.43)

and therefore retrieve the velocity dependent index of

refraction n(z),

(v1 - v2)
n(z) = -- I 2) - 1 (6.44)

and subsequently reconstruct the acoustic velocity profile,

c(z) = (6.45)

One of our numerical computations, was to conduct the

two-frequency procedure on the profile of Figure 10. The

reconstruction of c(z) is shown in Figure 30i. The recon-

struction features in this case of c(z) are similar to the
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constant density case. The density as function of z could in

turn be recovered by solving the differential equation (6.40)

for p(z) given n(z).

Density discontinuities invalidate the asymptotic

behavior of the reflection coefficient presented in Chapter

III. In fact, the reflection coefficient is generally not

integrable, and one has to introduce generalized functions in

its Fourier transform. The attending difficulties and their

resolution in the Gelfand-Levitan algorithm have not been

studied here.

6.6 Acoustic Attenuation

The study of the attenuation of acoustic waves in marine

sediments has been studied recently by Rajan and Frisk (6 7 )

who proposed a perturbative inverse method for the recovery

of the attenuation data from reflection data. Rajan has suc-

cessfully inverted for the acoustic attenuation profile given

the reconstructed velocity profile we had obtained through

the Gelfand-Levitan algorithm (6 8 ) . Here, we shall look at

the effects of intrinsic attenuation on the reconstructed

acoustic profile.

Although our formulation of the model of a Frisk experi-

ment does not include attenuation, it is possible to posit a

lossy acoustic profile, generate the corresponding reflection

coefficient and then run it through the Gelfand-Levitan
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algorithm. As expected, for small loss (a - 0.001-9.005

dB/m), the reflection coefficient, its Fourier transform, and

the reconstructed profile are little affected by the per-

turbation (see Figs. 25a, 25b, 26, 27). As loss increases

(a - 0.01 dB/m), the reconstructed profile deteriorates

rapidly. It should be pointed out that the lower values of

intrinsic attenuation prevail in the sediments in the abyssal

plain at the frequencies of interest (220 Hz). Incidentally,

one of the advantages of a monochromatic experiment is that

the frequency dispersion law of the intrinsic attenuation,

which is difficult to establish experimentally, particularly

at low frequencies (< 1 kHz), does not enter into

consideration.

6.7 Noise

As demonstrated in Chapter V, the Gelfand-Levitan

algorithm is stable, with small errors in the reflection

coefficient resulting in small errors in the reconstructed

velocity. The numerical experiments we have conducted by

adding zero-mean Gaussian stationary noise to the reflection

coefficient input support our previous conclusion.

Gaussian noise was added to both the real and imaginary

part of the reflection coefficient generated by the method of

Section 6.1. The resulting reflection coefficient was

submitted to the usual steps involved in the inversion

procedure, namely the Fourier transform step followed by the

application of the Gelfand-Levitan algorithm.
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The signal to noise ratio (SNR) is defined as

I

n

where the signal and noise powers for N discrete points are

N 2

nl

and

= 2  the variance of the noise.

As shown in Fig. 31 for a window profile, the perturbat-

ion of the reflection coefficient by the addition of zero-

mean Gaussian noise (a = 0.1) results in a roughly propor-

tional degradation of the reconstructed potential.

The preliminary assessment of the effect of noise leads

us to conclude that the Gelfand-Levitan inverse method is

stable in the presence of noise. This analysis can be

refined in the future by incluling a more pertinent model for

the noise based on Mook's results( 6 4 ); Mook has shown that

the addition of zero-mean stationary white Gaussian noise to

the point source pressure field resulted in a non-stationary

variance with the noise power concentrated near the vertical

(kz = k0 , the water wavenumber). One should also note that

the measured reflection coefficient itself can be regarded
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as a non-stationary process with a mean that varies between

one near grazing incidence and zero at infinity. That

consideration may lead to a more appropriate measure of

performance than that of SNR presented here.
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CHAPTER VII

CONCLUSION

In this thesis we have examined the theoretical and

computational underpinnings of a novel approach to the

determination of the acoustic parameters of the oceanic

sediment layer. Traditional marine seismic methods, acoustic

reflection and refraction measurements, "yield no velocity

information in the top of the first sediment layer which is

of critical interest for modeling the sea floor for under-

water acoustics" (34 ). That is precisely where the method

we have analyzed in the thesis is most accurate. Interval

velocity calculations are restricted to layer thicknesses

larger than one twelfth the water depth (34 ), and subsequently

the velocity at the sediment interface cannot be determined

accurately. In the absence of in situ core measurements

of surface velocity V0 , the velocity gradient at the top

of the sediment column is also uncertain. The direct

inverse method presented here requires only the a priori

knowledge of the speed of sound in the water above the

sediment layer.

By operating at a single frequency, the effects of

dispersion are separated from the propagation process.

Moreover, the dispersive characteristics of the medium can

be studied by performing the experiment at various frequencies.
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A single frequency, steady-state experiment also means

that the measurement relies on amplitudes rather than on

arrival times (explosive methods). While it is true that

time is measured more accurately than acoustic pressure,

arrival times can not always be interpreted correctly due

to multiple reflections. Amplitude, in turn, may be affected

by a host of factors to which arrival time is insensitive

such as loss and diffraction; it is not yet possible to judg-

the relative merits of the two methods in the absence of apprc-

priate experitmental data.

Contributions

The determination of the acoustic properties of the

ocean bottom was showr to be equivalent to the reconstruction

of an unknown potential in a Schrodinger equation from the

plane-wave reflection coefficient given at all angles of

incidence (Chapter II).

The pivotal role of the reflection coefficient lead

us to a detailed examination of its properties in Chapter III.

In particular, we showed, by induction, that the reflection

coefficient decays at least as rapidly as (1/k z2) and is

therefore integrable.

The derivation of our approach to the direct inversion

method was presented in Chapter IV. The Gelfand-Levitan

method was extended to the case where the acoustic velocities

on either side of a slab are different. That is, of course,

the case in the ocean bottom problem where the acoustic velocity
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in the basement is larger than the acoustic velocity in the

water. We also showed that the neglect of bound states is

justified at the current operating frequency in both clayey

silt and in silty clay.

Three methods for the numerical solution of the

Gelfand-Levitan integral equation were investigated (Chapter

V). The first method we developed is a series expansion of

the solution obtained by successive approximations. The

first two terms of this expansion represent a substantial

improvement over the well known Born approximation.

The other two numerical methods presented in Chapter V

are based on the discretization of the Gelfand-Levitan

integral equation. They represent two ways to bypass the

matrix inversion inherent in a straightforward solution of

the discretized equation. We then obtained estimates for

the bound on the error in the integral of the potential due

to discretization errors and due to errors in the reflection

coefficient.

In Chapter VI, we discussed the numerical results

obtained from the inversion of synthetic data. By dealing

with synthetic data, we insured that the bottom profile was

known exactly and that the effectiveness of the method could

be studied without any fear of experimental imperfections.

We concluded that the Gelfand-Levitan method appears to be

very accurate at the top of a sediment column, just where

the more usual methods are least accurate. The resolution
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obtained is less than the wavelength of the acoustic source

in the water. The degradation of the reconstructed velocity

profile becomes, however, pronounced if the reflection data

is restricted to real angles above critical. Perturbations

of data were also studied. Perturbations such as intrinsic

loss in the acoustic medium cA" noise in the data produce

perturbations in the reconstructed profile. The inclusion

of density variations requires the use of two frequencies

and two separate inversions of the Gelfand-Levitan equation.

We were able to gauge the performance of the

numerical schemes through the study of the inversion of the

acoustic profile for two half-spaces (constant velocity),

for which we derived the Fourier transform of the reflection

coefficient analytically. The improvements wrought by

the improved Born method are clear, as are the effects of

sampling on the reconstructed profile. The improved Born

method represents a fast and easy to implement method of

recovering the velocity at the top of the sediment column.

The two finite difference methods are more time-consuming

but yield an accurate reconstruction of the acoustic profile

over greater depth.

Future Work

On the theoretical front, we suggest a thorough

investigation of the Gelfand-Levitan method in the presence
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of density variations. It may also be useful to incorporate

loss directly into the original formulation. One should also

seek efficient numerical implementations of the Gelfand-

Levitan algorithm that could increase the penetration depth

of the reconstruction. In this respect, we think that the

combination of the Gelfand-Levitan algorithm with a priori

information such as the acoustic properties of the basement

might constitute a promising approach.

On the experimental front, the testing of the Gelfand-

Levitan inverse method on field data should be given priority

to determine its ultimate value. If an actual ocean-based

experiment were precluded at the moment, we would suggest

carrying out a similar electromagnetic experiment on dielectrics

at microwave frequencies.

On the numerical front, one would want to test the

whole experimental scheme, starting from pressure measurements

due to a point source and ending with the Gelfand-Levitan

inversion. Special attention should be paid to the effect

of noise in the recording of pressure on the plane-wave

reflection coefficient and ultimately on the reconstructed

acoustic parameters.
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It is remarkable that the Frisk experiment which was

conceived on purely intuitive grounds, when modelled

theoretically, bears out the expectation that accurate results

are achievable. To date, experimental data has been inter-

preted by time - consuming trial and error procedures. Our

mathematical and numerical approach suggestschat a more direct

inverse method for processing experimental data, requiring

no a priori information about the acoustic parameters of

the bottom is feasible.
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